
Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

I Introduction xiii

1 Temperature Measurement in the Industrial Environment 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Emission of Radiation from Real Surfaces . . . . . . . . . . . . . . . . 4

1.2.1 Blackbody Radiators . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Non-Blackbodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Radiation Thermometry . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.4 Kirchhoff’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.5 Real Surface Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Oxidation of Iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Formation of Wustite . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Formation of Magnetite . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.3 Formation of Haematite . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.4 2-D Structures of Adsorbed Layers . . . . . . . . . . . . . . . . . . . 14

i



ii CONTENTS

1.4 Electrical Properties of Iron and its Oxides . . . . . . . . . . . . . . . . . . 16

1.4.1 Magnetic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.2 Dielectric Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.3 Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

II The Optical Problem-Plane Surfaces 19

2 Reflection and Refraction from Plane Surfaces 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Smooth Surface Scattering - A Review . . . . . . . . . . . . . . . . . . . . . 22

2.3 The Need for Further Development . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Plane Waves in Material Media . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Maxwell’s Equations in a Conducting Medium . . . . . . . . . . . . 26

2.4.2 Plane Wave Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Boundary Conditions at an interface . . . . . . . . . . . . . . . . . . . . . . 32

3 Interference in Plane Layered Media 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Electromagnetic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Single Layer Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Multiple Layer Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 The Reflected Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Unoxidised Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Oxidised Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 Instability of Emissivity at low thickness of Scale . . . . . . . . . . . 54

4 Numerical Solutions for Smooth Surfaces 57

4.1 The Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Multi-Layer Oxide Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



CONTENTS iii

4.3 Interpretation and Discussion of Results . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Comparison to Experimental Data . . . . . . . . . . . . . . . . . . . 60

4.3.2 Comparison of One-Layer and Three-Layer Models . . . . . . . . . . 62

4.3.3 Emissivity Change with Thickness . . . . . . . . . . . . . . . . . . . 63

4.3.4 Emissivity Change with Wavelength . . . . . . . . . . . . . . . . . . 66

4.3.5 Emissivity Variation with Temperature . . . . . . . . . . . . . . . . 67

4.3.6 Final Conclusions for the Smooth Case . . . . . . . . . . . . . . . . 68

III The Optical Problem-Irregular Surfaces 71

5 Rough Surfaces 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 The Nature of Rough Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 The Rayleigh Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Scattering Characteristics of Rough Surfaces . . . . . . . . . . . . . . . . . 77

5.5 Rough Surface Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Rough Surface Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.7 Physical and Geometrical Optics . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7.1 Geometrical Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7.2 Physical Optics and Diffraction . . . . . . . . . . . . . . . . . . . . . 82

5.8 Fresnel and Fraunhofer Diffraction . . . . . . . . . . . . . . . . . . . . . . . 83

5.9 Multiple Scattering and Surface Shadowing . . . . . . . . . . . . . . . . . . 83

5.10 Influence of Scattering Regions . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.11 The Emissivity of Rough Surfaces - A Review to Date . . . . . . . . . . . . 86

5.11.1 Optical Roughness ratios σ/λ > 1 . . . . . . . . . . . . . . . . . . . 87

5.11.2 Optical Roughness ratios σ/λ ¿ 1 . . . . . . . . . . . . . . . . . . . 88

5.11.3 Rough Filmed Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.12 Review of Electromagnetic Scattering Approaches . . . . . . . . . . . . . . 95



iv CONTENTS

5.12.1 Differential Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.12.2 Integral Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.12.3 Rayleigh Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.12.4 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.12.5 Integral Equation Methods . . . . . . . . . . . . . . . . . . . . . . . 96

5.12.6 Variational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.12.7 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.13 The Purpose of Further Research . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Kirchhoff Theory 99

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 The Helmholtz Representation . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 The Interior Problem in R3 . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.2 The Exterior Problem in R3 . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.3 Existence and Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Beckmann’s Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3.1 Preliminary Problem Construction . . . . . . . . . . . . . . . . . . . 106

6.4 The Scattering Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4.1 The Kirchhoff Solution in the Fraunhofer Zone . . . . . . . . . . . . 117

6.4.2 The Determination of Rough Surface Emissivity . . . . . . . . . . . 118

7 Unoxidised Rough Steel Surfaces 121

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1.1 Non-Periodic Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1.2 Periodic Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2 The Extension to Infinite Surfaces . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Non-Periodically Rough Surfaces . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3.1 Smooth Surface ζ ′ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3.2 Non-Periodic, Perfectly Conducting Surface . . . . . . . . . . . . . . 128



CONTENTS v

7.4 Rough Periodic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.5 Simplifications of the Kirchhoff Integral . . . . . . . . . . . . . . . . . . . . 131

7.5.1 Periodicity of ζ(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.5.2 Main Integral (non-edge terms) . . . . . . . . . . . . . . . . . . . . . 132

7.5.3 Edge Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.5.4 Complete Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.6 Perfect Conductivty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.6.1 Main Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.6.2 Edge Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.6.3 Total Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.6.4 Even Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.6.5 Odd Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.6.6 Solution in Terms of θI , θS . . . . . . . . . . . . . . . . . . . . . . . 140

7.6.7 Total Solutions : Even and Odd Functions . . . . . . . . . . . . . . . 141

7.7 Mean Plane Reflection Coefficient . . . . . . . . . . . . . . . . . . . . . . . . 142

7.8 Varying Surface Reflection coefficient . . . . . . . . . . . . . . . . . . . . . . 142

7.8.1 Main Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.8.2 The Case θS = θI = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.8.3 Edge Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.9 Specific Periodic Surface Profiles . . . . . . . . . . . . . . . . . . . . . . . . 147

7.9.1 Solution Simplifications, A = 0, T →∞ . . . . . . . . . . . . . . . . 148

7.9.2 The Main Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.9.3 Convergence Criteria for a Valid Solution . . . . . . . . . . . . . . . 149

7.9.4 Evaluation of the Integral
∫ 2π
0 cos2m x0e

ik−z A sin x0dx0 . . . . . . . . . 151

7.9.5 The Edge Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.9.6 The Complete Solution . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.9.7 Comparison to Perfect Conducting Case . . . . . . . . . . . . . . . . 155

7.9.8 The Approximate Solution . . . . . . . . . . . . . . . . . . . . . . . 155



vi CONTENTS

7.9.9 Consequences of the Periodic Solution . . . . . . . . . . . . . . . . . 157

7.9.10 Closer Analysis of the second order term 1/4N2(2πA/T )2 . . . . . . 160

8 Oxidised Rough Surfaces 163

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.2 Constraints of the Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.2.1 Fresnel Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.3 Solution for Periodically Rough Surfaces . . . . . . . . . . . . . . . . . . . . 170

8.3.1 Consequences of the Oxidised Film Solution . . . . . . . . . . . . . . 171

9 Numerical Solution Scheme for Rough Surfaces 175

9.1 Interpretation and Discussion of Numerical Results : Unoxidised Surfaces . 176

9.1.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.2 Interpretation and Discussion of Numerical Results : Oxidised Surfaces . . 179

9.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.4 Future Directions in Research . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A 189

A.1 Derivatives of odd and even functions . . . . . . . . . . . . . . . . . . . . . 189

A.2 Derivatives of Reflection Coefficients . . . . . . . . . . . . . . . . . . . . . . 190

A.3 Properties of Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.4 Tangent Plane Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Bibliography 198



CONTENTS vii

Preface

This thesis is submitted as the full requirement for the degree of Master

of Science in Applied Mathematics.

Frank Bierbrauer



viii CONTENTS

Statement

This thesis contains no material which has been accepted for the award

of any other degree or diploma in any university and, to the best of

the author’s knowledge, no material previously published or written

by another person, except when due reference is made in the text of

the thesis.

Frank Bierbrauer



CONTENTS ix

Acknowledgements

I would like to thank both my thesis supervisor Dr Andrew Prentice

(mathematics department) and Dr John Chen (BHP Research Labo-

ratories). John for his generous pep talks that were all too necessary

at certain times, as well as for his friendship and enthusiasm. Andrew

for his willingness to make numerous changes in my thesis direction

during the years, and most of all for his help at times of need.



x CONTENTS

Summary

This thesis ”A Theoretical Investigation into Steel Surface Emissivity”, arose out of a need

from industry to more fully comprehend how the surface emissivity, an important param-

eter in the non-contact measurement of steel surface temperature, varied with the steel

object’s surface structure and its electrical properties. As well, the variation of emissivity

with temperature and wavelength are required.

The surface emissivity of an object is directly related to its reflectivity. The industrial

problem becomes an investigation of the reflective properties of a surface covered by iron-

oxide layers of irregular configuration. It is thus an optics problem in the interference and

scattering of electromagnetic waves.

The thesis is divided into three parts : Part 1, deals with an introduction to the thesis

problem, see chapter 1; Part 2, considers the analysis of the optical problem from a mul-

tilayer interference viewpoint, see chapters 2, 3 and 4; Part 3 considers the scattering of

electromagnetic radiation from layered surfaces, refer to chapters 5, 6, 7, 8 and 9.

Chapter 1 is an introduction to the area of non-contact temperature measurement (ther-

mometry). Optical Pyrometry and millimetre wave Radiometry, the current method of

temperature measurement, is discussed as well as the concept of emissivity. It discusses

the formation of oxide layers on steel at high temperatures, their structure and electrical

properties, the growth of layers and the structures possible in an industrial environment.

Chapter 2, 3 and 4 analyse the Optical problem of the reflection characteristics of the

combined steel/oxide structure. The theoretical aspects of reflection and refraction from

these plane surfaces is discussed, as well as a review of current research in this topic.

Chapters 5 and 6 deal with the theoretical aspects of surface roughness and the scattering

of radiation from such surfaces. Chapter 6 outlines the scattering approach used in this

thesis. The theory of Beckmann (a modified version of Kirchhoff theory) used in the thesis

problem is given, leading to a scattering integral and the determination of rough surface

emissivity.
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Chapters 7 and 8 are devoted to analytical solutions of the scattering integral for both

unoxidised (ch 7) and oxidised (ch 8) surfaces. The fundamental work of this thesis is then

outlined : the solution of the Beckmann scattering integral for dielectric periodic surfaces.

The solution includes the influence of surface edges. It gives a simple formulation of both

oxidised and unoxidised scattering coefficients in terms of the smooth reflectivity and a

multiplier making up the roughness contribution. This simple expression gives rise to the

complete scattering behaviour of the rough surface.

General conclusions for the entire thesis are then made in section 9.3, with a discussion of

further possible research covered in section 9.4. Most of this thesis contains original work

which contributes as follows :

1. Previous research on scattering of radiation assumed a single non-absorbing layer of

oxide of constant low conductivity, when in fact :

• Oxides are highly absorbing, section 1.4.

• The oxides are semiconductors at high temperatures, section 1.4.

• More than one layer of oxide exists, they are wustite, mgnetite and haematite,

section1.3.

2. Previous work concentrated on rough perfectly conducting surfaces and complex

numerical models. The solution of this problem is made as follows :

• A simple analytic solution is found with a straightforward physical interpreta-

tion for both oxidised and unoxidised surfaces, sections 7.8, 7.9, 8.3.

• The solution specifically treats dielectric surfaces having finite conductivity,

sections 7.8, 8.3.

• The solution is easily extended to surfaces of infinite dimensions, section 7.2

For both the flat surface interference case and the rough surface case numerical

simulation confirm the theoretical solutions, chapter 4 and 9.
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Chapter 1

Temperature Measurement in the

Industrial Environment

1.1 Introduction

In the steel industry temperature determines to a great extent the quality and type of

steel produced as a final product for use in many varied technologies. Therefore, the tem-

perature of steel needs to be known to a fair degree of accuracy. In addition, it needs to

be controlled in the processing of steel.

So, temperature is one of the most important parameters to measure and control in indus-

try. In order to measure the temperature of steel surfaces in industry two standard ways

are in everyday use. One, is by the use of direct or contact means, where this implies the

direct measurement of surface temperature through the use of a thermocouple attached

to the steel surface itself. Contact means are not always applicable. If for instance the

object under investigation is in motion, is inaccessible, or may be damaged as a result

of contact, [68]. To circumvent this problem non-contact temperature measurement has

become a very popular method in industry. This method entails the measurement of sur-

face temperature through the measurement of the radiation emitted from the steel object

1
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under consideration. This is made possible by the fact that any object above 0oK pro-

duces thermal radiation. This radiation is received, and indirectly, the temperature may

be measured.

The most commonly used technology for non-contact, on-line temperature measurement

is Infrared (IR) pyrometry. Another useful technology is microwave radiometry which

offers some unique advantages such as seeing through smoke, measuring sub-surface tem-

peratures and so on. In both cases the emissivity variation (to be defined) significantly

effects the measurement results. The emissivity itself is dependent on the steel object’s

material composition, surface structure, measurement frequency and body temperature.

This implies two areas of investigation low and high temperatures. The characteristics of

the emissivity are quite different at low temperatures (200 - 600oC) as compared to higher

ones (800- 1400oC).

In the steel industry, specifically the rolling of hot steel, the temperatures are often rather

high, typically above 600oC. It is therefore important to study the variation of emissivity

with the variables mentioned above.

Metallurgical studies indicate that at elevated temperatures up to three layers of iron-

oxide form on steel, [19]. The process of oxide growth is rapid and influences, to a marked

degree, temperature measurement. Since IR pyrometry and microwave radiometry range

over a wide spectrum, not only must one investigate surface emissivity as a function of

temperature, 800 - 1300oC, but also the wavelengths of measurement radiation, 0.5 - 20µm

up to millimetre and centimetre wavelengths. Additionally each surface is disturbed by

rough undulations, this too adds an extra factor to emissivity characteristics.

In order to get a clear idea of what industrial temperature measurement entails, we will

discuss several topics necessary to define the problem of emissivity determination for real

surfaces.

First it must be made clear what we mean by the emission of radiation from surfaces,

how to measure this radiation and consequently the temperature of the surface. How to

evaluate the emissivity from such data, and what specific characteristics of the material
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and its surface, influence the emissivity.

A brief introduction to radiative properties is given and then the oxidation characteristics

of iron are considered.

Previous research included the effect of oxide layers on a metal surface but it was restricted

to single layers of haematite for which

1. Only non-absorbing layers of oxide were considered, ie oxides with zero absorption

coefficient. This is not valid at high temperatures when absorption effects must

be considered since the oxide is no longer a simple dielectric but a semiconductor.

This effect has not been previously considered and will be taken into account in this

thesis.

2. Previous work, even if it did consider oxide absorption of radiation, did not allow for

the large increase in conductivity present at high temperatures of the oxides. This

effect will also be analysed here.

3. To the authors knowledge, the influence of oxide layers has always been restricted to

consideration only of the oxide Fe2O3 when in fact there are always three layers of

oxide present at high temperatures. That is, wustite, haematite and magnetite. So

multilayer structures should be investigated because each of the oxides possess dif-

ferent electrical properties which may lead to qualitatively and quantatively different

behaviour.

4. In fact, it is important to note that the most prevalent oxide is wustite not haematite

as previously thought.

There are then several new contributions to be made for the study of smooth surface

emissivity. In summary :

• The absorption of iron-oxides are taken into account

• Three layers FeO, Fe3O4, Fe2O3 of iron-oxide are analysed.
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• The semiconducting properties of each of the oxides is included.

1.2 The Emission of Radiation from Real Surfaces

1.2.1 Blackbody Radiators

Consider a body that is capable of absorbing all radiation incident upon it, so no radiation

is either transmitted or reflected. However it can still emit radiation merely by the fact

that it is a hot body above 0oK. Now, when a state of equilibrium exists between the

energy received and emitted then this total absorber must emit radiant energy at the

same rate it receives it, otherwise its temperature would either rise or fall again eventually

producing an equilibrium situation, [37]. This complete absorber is called a blackbody and

emits radiant energy related to its temperature and wavelength of radiation by Planck’s

law :

L(λ, T ) =
c1

λ5(ec2/λT − 1)
(1.1)

where L(λ, T ) is the time rate of emission of radiant energy per unit interval of wavelength,

λ, through 2π ster radians per unit area of a blackbody at absolute temperature T . This is

also called the hemispherical spectral radiant intensity per unit area of a blackbody. The

constants c1 = 3.7413 × 10−16Wm2 and c2 = 1.4387 × 10−2mK are the first and second

radiation constants respectively, [37].

1.2.2 Non-Blackbodies

Any body which is not a perfect absorber is called a non-blackbody. This of course

includes all real materials since perfect absorption is not strictly possible, although good

approximations exist. In that case define the ratio of spectral radiance of a non-blackbody

to that of a blackbody at that temperature and wavelength by the ratio

ε =
L(λ, T )nbb

L(λ, T )bb
(1.2)
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where the subscripts bb = blackbody and nbb = non-blackbody. This ratio, which measures

the ability of a non-blackbody to emit radiant energy with respect to a perfect emitter

(absorber), is called the spectral emittance of the body. This value must always lie between

0 and 1, 0 being the poorest emitter and 1 the perfect emitter as close to a blackbody

as is possible. Then we may define the time rate of emission of radiant energy for a

non-blackbody as

L(λ, T )nbb = εL(λ, T )bb (1.3)

or using equation (1.1)

L(λ, T )nbb = ε
c1

λ5(ec2/λT − 1)
(1.4)

notice that the emittance ε is a function of both wavelength and temperature as a conse-

quence of the definition above. That is

ε = ε(λ, T ) (1.5)

So once the radiant energy L(λ, T ) has been measured and the wavelength of the emitted

radiation is known then it is possible to calculate from (1.4) the temperature, provided

the emittance of the object is known. Some way must be found to calculate or measure

this variable.

1.2.3 Radiation Thermometry

The scientific technique of the measurement of temperature via the reception of spec-

tral radiation is called Radiation Thermometry. The detection of such radiant energy is

achieved with the use of either a radiation pyrometer or radiometer. The two devices

measure radiant energy over different wavelength ranges. The radiation pyrometer detect-

ing energy in the range from visible to infrared and the radiometer up to millimetre and

centimetre wavelengths, [37]. Why these particular ranges ? The atmosphere surrounding

the radiant object and the measuring device consists of a variety of gases such as Nitro-

gen, Oxygen, water vapour and Carbon Dioxide. All of these gases absorb, reemitt and



6CHAPTER 1. TEMPERATURE MEASUREMENT IN THE INDUSTRIAL ENVIRONMENT

scatter radiation passing into them. This presents a problem as to the radiation allowed

to pass through the atmosphere to be received by the radiometer or pyrometer. There

are however spectral regions in which the atmosphere does not absorb radiation. These

regions are called atmospheric windows and are free of atmospheric interference. They

are clearly observable in the Figure 1.2.1 as wide peaks in the transmittance of radiation

through the types of gases present in air. It is fairly obvious that the regions over which

the clearest observation is possible occurs over the ranges ∼ 0 − 1µm and ∼ 8 − 14µm,

[68]. Similarly this is true at longer wavelengths such as mm and cm. Then we have

• Optical Pyrometry 0− 1µm, 8− 14µm

• Radiometry 0.5− 3mm, cm

1.2.4 Kirchhoff’s Law

When electromagnetic radiation is incident on a body it is either transmitted through the

body (at least partially), reflected off the surface or absorbed by the body. This is required

by conservation of energy. Call the intensity of radiation received I0, that transmitted It,

that reflected Ir and that absorbed Ia. Then we have

I0 = Ir + It + Ia (1.6)

or

1 = r + t + a (1.7)

where r = Ir/I0, t = It/I0 and a = Ia/I0, being the amount reflected, transmitted and

absorbed respectively. Usually these terms are known as the spectral reflectance, trans-

mittance and absorptance’ [52]. These terms relate to non-blackbodies and as such depend

upon the spectral distribution of the impinging radiation [37] and so upon the tempera-

ture of the source of the radiation. Now when the source of the impinging (blackbody)

radiation has the same temperature as that of the body for which the above terms apply,
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then the total emittance is equal to the total absorptance. That is

εtotal = atotal (1.8)

For bodies which are opaque, ie where the transmittance is zero, t ' 0, we find

ε = 1− r (1.9)

in other words the emittance may be calculated from the reflectance of the object. Since

the reflectance of most real objects is measured by the use of reflected radiation from its

surface, it must depend critically on the wavelength of the incident radiation, its electrical

properties such as conductivity and the surface characteristics of the surface such as its

chemical and physical structure. The emittance will now depend on many aspects other

than just the wavelength and temperature.

Reflectivity, Emissivity, Transmittivity

It is best to clarify some terms in common usage. The aforesaid radiant characteristics of

material bodies : the reflectance, transmittance, absorptance and emittance are properties

of ‘real’ specimens, regardless of the body’s thickness or surface condition’, [89]. Then the

reflectance from a non-optically smooth or inhomogeneous material is called reflectance,

whereas the property of reflection from an optically smooth surface that is opaque is the

reflectivity. Similarly the transmitivity is the transmission characteristic of a perfectly

smooth and homogeneous body. The transmittance is the ratio of transmitted intensity to

incident intensity of the real body with whatever optical properties and surface structure

it has. Also, the absorpivity is again that of an optically perfect specimen which is opaque.

The same applies to the emissivity. It is common that these terms are interchanged in

the literature with many works referring to the emittance as emissivity and reflectance as

reflectivity and so on. It will be assumed forthwith that we are always referring to the

real substance but shall frequently refer to radiative properties by their common names.
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1.2.5 Real Surface Effects

By real surfaces we mean surfaces possessing characteristics such as surface roughness,

inhomogeneities in the bulk structure and so on. These real surface characteristics can

strongly influence the determination of the reflectivity (reflectance) of a surface, [89]. They

may be divided into three separate categories : Topographical, Chemical and Physical.

Physical

The physical characteristics include such structures as the crystal lattice orientation, par-

ticle size, strain and the like. For a surface free of surface layers, such as oxides on steel, the

reflectance characteristics are governed by a thin surface layer a few hundred angstroms

deep. In this layer several features can alter the reflection properties such as adsorbed gas

atoms, lattice imperfections and crystalline plane variations. This also includes processes

such as polishing and other mechanical manipulations. In our case this would include the

action of a roller when hot steel is rolled.

Chemical

By chemical characteristics we refer to the presence of inhomogeneities and contaminants

in surface layers on the steel. These surface layers could include grease or other common

industrial contaminants. Most often this layer will be constituted of the oxide(s) of the

metal in question. This would mean the presence of various oxides such as ferric oxide

(Fe2O3) or wustite (FeO). In the case of steel, since it usually consists also of alloys, it

will often have oxides of Chromium, Silicon and Nickel as well.

Other than oxidation, several reactions are possible with gases, including hydrogen, carbon-

monoxide/dioxide and sulphorous gases such as H2S, S2 and SO2, [33]. These reactions

are called decarburisation, carburisation and sulfidation. These extra reaction products

will not concern us in this thesis. Since their presence is minimal compared with the
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iron-oxides only these will be dealt with.

These oxide layers do not make a smooth join with the base metal or for that matter

grow in a regular way. The growth depends on surface structure, temperature and oxygen

partial pressure. This of course produces variations in the reflectance via the refractive

index of the material. The effect of these coatings on the metal can completely change

the emittance characteristics from that of a metal to that of a dielectric, [89].

Topographical

The topographical characteristics describe the the surface profile of the steel. That is, its

boundary with the surrounding atmosphere. Generally the shapes of real metal surfaces

are always irregular in some way, be it the surface of the metal itself with no oxide present

or when oxide is present. This variation is commonly referred to as surface roughness,

which consists of peaks and valleys about the mean surface plane. Its effects are well

known to drastically change the emittance of real surfaces, [72]. The most commonly

noticed trait being a marked rise in emittance compared with a perfectly clean regular

surface.

The chemical and topographical characteristics will be those considered in this thesis.

1.3 Oxidation of Iron

Iron and Steel oxidise at high temperatures very rapidly. The higher the temperature

the faster the oxidation reaction. This depends also upon the partial pressure of oxygen.

The reaction of oxygen with a metal is usually quite complex and may occur via several

possible mechanisms. We start with a clean metal surface. Oxygen is adsorbed onto the

metal surface and then can dissolve into the metal. Oxide is formed on the surface as

either a film or as separate oxide nuclei, [44]. Both adsorption and initial Scale formation
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depend on the surface orientation, crystal defects in the surface, surface preparation and

impurities present in the surface and the gas. Once these islands of oxide exist they can

expand over the whole metal surface covering it in an oxide film, often called ”Scale”.

Then, in summary, the growth phase is

• Adsorption of oxygen on the surface

• Formation of oxide nuclei which grow laterally to form a continuous film

• Further growth of the film perpendicular to the surface

Note, that if the oxidation takes place at atmospheric pressure, as it surely does in hot

rolling of steel, then the first two stages above occur too rapidly to be observed. The

portion of the process that can be seen is the actual thickening of the film. For a detailed

analysis of iron oxidation see [71]

The actual layer structure is often in the form of flat planes following the crystal structure

of the particular oxide. These planes are not necessarily flat on the surface but may

form terraces, ledges and kinks all of which contribute to an irregular surface shape. This

process of forming planes, is however, restricted to high densities of atoms, other structures

are possible. To some degree the metal is now separate from the gas. Once a uniform film

covers the metal further reactions can only take place through solid state diffusion of the

reactants through the film, [44]. In our case, when quite thick films may form, this rate

of reaction is determined by the chemical potential gradient across the Scale, see Figure

1.3.2, [19].

At times, porous Scales form which do not prevent further adsorption as in the case of

solidstate diffusion. In this case, reactions may be limited by processes occurring at phase

boundaries, [44]. At high temperatures the oxides may actually melt and form further

structures.

In each type of metal the reaction and formation of Scale will depend on the history of the

metal itself, that is, whatever previous treatment the metal had been subjected to, the

temperature, gas composition, pressure and the time for which the reaction was allowed
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to take place.

Generally, three types of oxide or Scale form on iron or steel (excluding Chromium, Silicon

etc), they are Wustite, FeO, Magnetite, Fe3O4 and Haematite, Fe2O3. The rate at which

they form and their dependence on oxygen content and temperature are shown in the phase

diagram in Figure 1.3.1, [38], with a modern version in Figure 1.3.2 , [19]. Their thicknesses

form in the ratios

FeO : Fe3O4 : Fe2O3 (1.10)

1 : 0.04 : 0.009 (1.11)

1.3.1 Formation of Wustite

The formation of a Scale layer of Wustite takes place via the reaction

1
2
O2(g) + Fe = FeO (1.12)

This wustite phase is only stable above 570oC. We are dealing with temperatures well in

excess of this stability point, for example in the range 700 - 1200oC. Below this critical

temperature the wustite breaks down into magnetite via the equation, [35].

Fe3O4 + Fe ⇀↽ 4FeO (1.13)

Although some haematite is also present, [90].

The wustite constitutes usually up to 95% of the total Scale formed, [90]. The growth

of Scale is determined by diffusion of oxygen into the iron and can be described by a

parabolic rate law (
∆m

A

)2

= kt (1.14)

where t is the time for the reaction, ∆m the mass of oxide formed, A, a constant and k,

the rate constant of formation. The growth is quite fast above 700oC with thicknesses in

excess of several 100 µm forming in a few hours. It can be seen however, [19], that the

Scale formation can be very rapid indeed, with the thickness depending on the equation

d = K

√
te−

40500
RT (1.15)
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see Table 1.3.1, [19] for the speed at which layers form.

Table 1.3.1 Iron-oxide layer growth over 1000 seconds at increasing temperature

The formation of the first layer of oxide is well demonstrated by the diagram of Hauffe, [38],

which shows how each Scale layer forms. There is an initial rate of oxide growth above

800oC which produces a compact layer of FeO about 0.01 µm thick, which then crys-

talises with a definite crystal arrangement with many grain boundaries. Further growth

of another layer of FeO continues through the cavities produced from the earlier Scale

formation.

Note that wustite itself is metal deficient this means its structure is often written as

Fe1−yO, this is usually called non-stoichiometry meaning a variation in the ideal molec-

ular formula, [33]. This non-stoichiometry decreases the higher the temperature so its

stability increases at higher temperatures, with the value of y being very small (0.05)

between 800 and 1250oC at the iron/wustite boundary. It is this non-stoichiometry which

allows self diffusion of iron which allows further reaction of iron with oxygen once these iron
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molecules have migrated to the surface of the layer, [44]. Further oxidation to magnetite

and haematite is now possible.

1.3.2 Formation of Magnetite

The reaction governing the formation of magnetite is

3FeO +
1
2
O2(g) → Fe3O4 (1.16)

As for wustite the formation of magnetite obeys a parabolic rate law, the law mentioned

above (1.15) is general for all iron-oxides except for the different rate constants. These

are shown in Table 1.3.1, [38]. Magnetite is also non-stoichiometric so this is written

Fe3−yO4. The value of y increases as temperature increases allowing further diffusion

and formation of the other oxide, haematite. Note that because of this diffusion ability

the protective action of the oxide layers is small, [78]. This means oxidation continues

to occur even when the iron seems to be protected from further oxidation by the layer

itself. The total percentage of magnetite composition comes to about 4%, considerably

less than wustite, although it is predominant below about 570oC. During the formation

of this phase, cracking occurs continuously caused by the mechanical stresses that exist

between different phases, [90].

1.3.3 Formation of Haematite

Haematite Fe2O3 forms on top of magnetite via

3Fe3O4 +
1
2
O2(g) → 3Fe2O3 (1.17)

It is thought that the motion of oxygen through pores and cracks in both haematite and

wustite allows further growth in both of these inner layers and the relatively minimal

growth of haematite which occupies only about 1% or so of the total Scale layers. The

non-stoichiometry of haematite is very low, [44], and the oxide may be oxygen deficient,
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as such, any diffusion is very weak which leads to the previously mentioned fact that fur-

ther layer growth under the haematite layer is only possible through migration of oxygen

molecules via cracks and pores.

1.3.4 2-D Structures of Adsorbed Layers

Usually, most of the oxygen atoms are adsorbed preferentially on sites with the highest

density of surface atoms. Thus the shape of oxide surfaces rely on the crystal planes

present on the metal substrate. A variety of structures may be formed not only on metal

crystal planes, but also as a rearrangement of surface atoms to form new configurations.

Since different crystal faces adsorb oxygen differently the surface film structure may form

striations or facets. These facets are known to change surface oxygen diffusion and alter

the further formation of new layers.

The growth of oxide films takes place via a spreading out from oxide nuclei, this lateral

spreading is temperature dependent. The size and shape of these nuclei influence the

profile of the eventual film formed. Once this nucleation has taken place the film starts to

thicken. This increase in film depth occurs very rapidly to begin with and then drops off

to a gradual increase.

Various phases of both iron and its oxides exist, [87]. This phase or modification is a

clarification of the change in crystal structure at different temperatures and pressures.

For iron it exists in an α phase until it converts to its γ phase at about 912oC. The phase

influences the reflection properties of iron for example α iron has a reflectivity about 3%

lower than γ iron, [90]. Iron undergoes a further transition to δ iron at 1394oC. At very

high temperature eg 1538oC the first phase has its melting point.

The oxides also form in different phases. FeO consists mainly of phase III at high temper-

atures (∼ 1000oC). The phases of magnetite are γ − Fe3O4 and haematite α, γ − Fe2O3

phase, these phases also allow labelling of transitions in electrical properties.

In fact, a great variety of structures are possible from plane facets to needle like structures.
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Typical sections through pieces of iron covered in oxide are shown in Figures 1.3.3 to 1.3.6.

Cavities, platelets, pores, ridges, whiskers and blades are all possible growth structures

which give rise to a wide variety of surface roughness characteristics.

Surface Defects & Structures

The defects and unusual surface structures vary widely from simple planes to blades and

whiskers. These structures form the basis for a rough surface either for iron itself or

as the surface profile of the oxide on it. Included in the roughness characterisation are

grain boundaries Figures 1.3.9, 1.3.10, 1.3.13, which act as scattering elements inside the

oxide, [78]. This particular form of roughness will not be considered although it can be

taken into account with the use of the so-called Maxwell Garnett equations, [50]. Further

possible structures include the formation of bubbles or cavitites underneath the oxide,

Figures 1.3.11, 1.3.12. Surface porosity adds to the variation and is difficult to consider

in scattering, Figures 1.3.6-1.3.9. Stresses in oxide formation can produce cracks and a

breaking off of Scale. Similarly, in the process of cracking off of Scale, when water is applied

during hot rolling, spalling produces ridges and curled up layers of Scales in patches. All of

these effects can significantly alter the intrinsic roughness of the steel/iron and so change

the way radiation is scattered from real steel surfaces.

We will restrict ourselves mainly to periodic surfaces generally for theoretical reasons but

also because the overall large scale roughness structure approximates an undulations akin

to a sinusoidal shape, see Figures 1.3.3-1.3.6. These other extra roughness producing

structures may be of a small enough size that longer measurement wavelengths will not be

aware of them. Our structures then, are films of oxide on steel having a kind of average

periodicity around 50-150 µm with amplitudes of the order of 1-2µm, Figure 1.3.5.

Although the structures mentioned above can, to some extent, be considered to be periodic

with amplitude A and period T , the surface is only approximately so. It was already

mentioned that the formation of oxide takes place in a plane layering process so surfaces

having a step-like profile are also possible, not to mention saw-tooth shapes. Lastly, there



16CHAPTER 1. TEMPERATURE MEASUREMENT IN THE INDUSTRIAL ENVIRONMENT

is some evidence to suggest that surfaces undergoing corrosion (for us, oxidation) form

fractal surfaces which have structure on all scales. These approximations to real surfaces

could take into account the more unusual forms such as dendrites, whiskers (Figure 1.3.14)

and platelets mentioned previously, [53], [32]. This could be the subject of further study.

1.4 Electrical Properties of Iron and its Oxides

The electrical properties of iron and its oxides contribute to their refractive indices which

influence the scattering of radiation from the surface of oxidised steel. The three separate

electrical properties : permeability, accounting for magnetic effects, permittivity, also

written as the dielectric constant, and the conductivity, which accounts for the ability of

materials to conduct electricity. Of these, the one we are most concerned with will be

the conductivity. Before discussing this aspect we will briefly outline the effects of both

permittivity and permeability.

1.4.1 Magnetic Effects

Iron

Iron and steel are ferromagnetic substances. This means they exhibit strong magnetic fields

without the need for the presence of an imposed magnetic field. So, their permeabilities

are large and can strongly effect the absorption, reflection and transmission of radiation.

However, magnetic materials possess a temperature called the Curie point beyond which

their ferromagnetism converts to paramagnetism. This condition randomises the mag-

netic moments of the previously ferromagnetic substance (magnetic moments aligned)

and thereby reduces the permeability significantly. For iron, this temperature is about

768oC. Below this temperature its magnetic properties cannot be ignored. However at

elevated temperatures, prevalent for hot rolled steel, 800 - 1300oC, the permeability can

be assumed to be that of free space with little loss of accuracy. So, for us, iron will have

µ = µ0, the permeability of free space.
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Oxides

The only truly magnetic oxide is magnetite, as its name implies it too is strongly magnetic

at lower temperatures. At high temperatures it becomes virtually non-magnetic allowing

us to express the respective permeabilities of the oxides as that of free space.

So we have that µFeO ' µFe2O3 ' µFe3O4 ' µ0

1.4.2 Dielectric Constants

It is possible for the permittivity of materials to become significant. The ability of a

material to react to impinging radiation via the introduction of the polarisation of the

material leads to complex permittivities and gives rise to extra conductive effects. These

effects can be considered and section (2.4.2) takes some note of their properties. Currently

most of the relevant literature assume the dielectric constants of iron, and its oxides, to

be that of free space, ε0, we also will implement this assumption throughout. Therefore

the permittivities of each material are defined by :

εFeO ' εFe2O3 ' εFe3O4 ' ε0 (1.18)

1.4.3 Conductivity

Iron

It is well known that the conductivity of iron decreases with increasing temperature.

Although its conductivity is very high at low temperatures eg at 200oC it has a conductivity

of about 5× 106 (Ωm)−1. Its conductivity quickly declines until at 800oC its conductivity

is only 1 × 106 (Ωm)−1, nevertheless still a significant value. The graph of resistivity

(1/conductivity) variation with temperature is shown in Figure 1.4.1 and demonstrates

this decline. The results of this graph will be used as the information for a table of

σ = σ(T ) for use in the equations employed to calculate the refractive index of iron, [26].
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Oxides

All of the oxides of iron are actually semiconducting ceramics and as such have the

rather unusual property of increasing their conductivities with increasing temperature.

For wustite its conductivity increases, see, [84], [93] and, [2]. Its conductivity may go

as high as 104 (Ωm)−1. Its conductivity is p-type but undergoes a transition to n-type

depending on the oxygen pressure, [44]. Magnetite has a very slowly increasing conduc-

tivity with temperature but is slightly higher than that of wustite. It may also reach

conductivities in the range 104 (Ωm)−1for temperatures in excess of 900oC. It is an n-type

semiconductor, [44]. Similarly the conductivity of haematite increases with temperature

but at a much faster rate than either of the other two oxides. It may reach conductivi-

ties of the order of 105 (Ωm)−1, [2]. Its conductivity varies, it is a n-type conductor in

the temperature range 650-800oC and a p-type at higher temperatures, [44]. All of their

conductive properties are described by the graph of Adler, [2]. His results were used to

construct conductivity functions for use in this thesis.

For the case of iron and magnetite no simple formulae exist to describe their conductivities.

Instead, a Spline algorithm was used to fit to the graphs of Davis, [26], and Adler, [2],

see Figure 1.4.2. In the case of both wustite and haematite two simple equations may be

used. Their conductivities obey an exponential decay relation.

For wustite, the relation is

σFeO = 2.5769e−
810.168
T+273 (1.19)

For haematite, it is

σFe2O3 = 5.623e−
2.129

T+273 (1.20)

The 273 of course a conversion to oC.
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The Optical Problem-Plane

Surfaces
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Chapter 2

Reflection and Refraction from

Plane Surfaces

2.1 Introduction

Smooth Surface scattering has a long history and the major contributions to such scatter-

ing is considered in the first section. A brief review is given concentrating on the work of

Tanaka & DeWitt, [82], which is typical of the investigations in this vain. They studied

the smooth surface reflection for oxidised metal surfaces experimentally and theoretically.

This work provides a starting point for our more involved investigation and as a check with

experimental data. This section is kept brief because of the already significant literature

available on the topic.

The second section gives a quick introduction to the use of electromagnetic theory in

scattering concentrating on the electrical properties of materials and their origin. This is

important for the subsequent investigation. It is included for completeness even though

many standard texts cover the material, although several specialist topics such as disper-

sion are not standard by any means.

Included in the last section are the boundary conditions for two material interfaces, these

21
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conditions being vital, as they are needed for a proper solution of the smooth surface

problem.

2.2 Smooth Surface Scattering - A Review

A good deal of work has been done in the investigation of smooth surface scattering. As

regards the problem of oxide formation on steel, the major contribution is that of Tanaka

& DeWitt, [82], who conducted an experimental and theoretical study into emissivity

variation with oxide growth. The theoretical study investigated the smooth surface film

effects for a single layer of Fe2O3 (haematite), assumed non-absorbing over the wavelength

range 0− 3µm. No account was taken of the absorption properties of the oxide layer and

the conductive temperature dependence was not considered. It was assumed the oxide

present was haematite when the dominant layer present at high temperatures is in fact

wustite with completely different electrical properties. This is not such a bad assumption

however, since only temperatures up to about 630oC were considered, wustite breaks down

to magnetite and haematite below 570oC. Tanaka & DeWitt also carried out experimental

work at two separate wavelengths, 1.6 µm and 3.0 µm. They oxidised a clean polished

steel specimen of carbon steel (not iron as in our case) at specified temperatures : 427 -

627 oC. The variation of emissivity over time at the specific wavelengths was measured.

This was equivalent to recording the emissivity as a function of oxide layer thickness (cf

section (1.3.1)). They obtained the graphs shown in Figures 2.2.1, 2.2.2 and 2.2.4. Ob-

vious initial increase in emissivity as the oxide layer grows and interference effects after

the emissivity reaches a value close to one. The experimental results were supported by

theory, although no direct conclusions were drawn, except that the ‘ discrepancy between

simulation and experiment increases as oxidation proceeds ’. Although the theoretical

model was quite useful in predicting emissivities, [82]. Considering the fact that the true

conditions of oxide growth were not included in their theoretical model these conclusions

are to be expected, other than the given reason : the presence of roughness, which of
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course cannot be ignored.

Other contributors to the smooth film on a steel substrate model include, Brannon & Gold-

stein, [16], who took experimental measurements of the emissivity of aluminium coated in

a layer of aluminium oxide at temperatures up to 200oC they compared their results to

theoretical models similar to Tanaka & DeWitt’s, [82], except for the inclusions of the ab-

sorption properties of the oxide layer. They found the initial increase in emissivity at small

thicknesses of oxide until a constant value was reached. They also noted a discrepancy

in theoretical and experimental results. The experimental results always had a greater

emissivity than the theoretical ones. This was considered due to scattering in the layer

itself, no mention was made of surface roughness. The simulation results, Figure 2.2.3,

did approximate closely the experimental results for small oxide thickness and followed

the same general trend.

Experimental research conducted by Iuchi et al, [43], found that the emissivity of rolled

steel increased very slightly in a linear fashion as the temperature was increased from 300 -

800oC. In fact, it was clearly stated that ε ∝ √
T , compare with Figure 2.2.6. Each reading

indicated an increase in emissivity for smaller wavelengths see Figure 2.2.5. The variation

of emissivity with wavelength was seen to be of the form ε ∝ λ−1 or λ−1/2 reaching a

constant value for longer wavelengths. High emissivities were recorded in the visible range

and low ones in the infrared.

Siegel & Howell, [72], support the previous results and state categorically that an oxide

thickness of even a few microns involves a substantial increase in emissivity. Typical graphs

are shown in Figure 2.2.7 and 2.2.10. They also show that the temperature dependence is

to the half power at wavelengths greater than about 5µm. There is a direct relationship

for emissivity increase with temperature and resistivity (inverse of conductivity). This

implies that oxide layers, being more conductive at higher temperatures, should produce

lower emissivities as the temperature increases. This effect is reversed at short wavelengths

∼ 1µm. Similarly emissivity is known to decrease with increase in wavelength and vice

versa, for a decrease, [72], Figure 2.2.8, 2.2.9.
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Summary

In summary the experimental characteristics of plane layered surfaces are :

1. When compared to the unoxidised case there is a distinct increase in emissivity at

small wavelengths.

2. As the wavelength is increased the emissivity decreases as ε ∝ λ−1/2 becoming

constant and small at very long wavelengths.

3. For emissivity verses thickness of oxide layer, there is an initial increase from a very

low emissivity to one close to 1.

4. There are oscillations observed when the layer thickness is comparable to the wave-

length.

5. After the oscillation the emissivity remains constant

6. The emissivity is proportional to the square root of temperature.

7. The emissivity is high in the visible spectrum and low in the IR.

The theoretical results show discrepancies with experimental data

1. The emissivity is always lower than the corresponding experimental result.

2. Thicker oxide layers show greater variation from the experimental.

3. Certain assumptions are usually made to account for discrepancies such as roughness.

2.3 The Need for Further Development

As can be seen from the summary above there is a need to account for theoretical and ex-

perimental discrepancies. In some cases the theoretical results show reasonable agreement

and in others they don’t produce the desired characteristics of the experimental results at
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all. For example, the usual reason given for the discrepancies are that the result must be

due to roughness when in fact there is no need to extend the theory this far. Consideration

should be taken of simpler added contributions such as extra oxide layers, the absorption

properties of the oxides and their conduction increases at high temperatures.

It is quite possible to account for the extra emissivity in this way. Absorption may be

the likely contributor. The variation in experimental and theoretical results at longer ox-

idation times is most likely due to the extra layers of oxide formed having quantitatively

different electrical properties.

Therefore, there is a need for the extension of previous work into these heretofore ne-

glected aspects of smooth, flat surface, multilayer, scattering. This provides the reason

for the purpose of the present study before any extra consideration of properties such as

roughness are required. Any deviation from this point onwards will then merit such a

study.

2.4 Plane Waves in Material Media

Since steel in industry is usually covered fully or partially in layers of iron-oxide we must

consider what effect these layers have on the reflection of plane waves from this multilayer

surface. It would be expected that both the thickness of each layer and each successive

layers’ electrical properties would contribute to the scattering characteristics of the re-

flected field.

Both the layers, represented by the iron-oxides : Magnetite, Haematite and Wustite, and

the steel, represented by iron (for simplicity), must be considered absorbing, that is, ab-

sorbing incident radiation of wavelength λ through the conductivity σc. This means their

refractive indices must be complex (see section (2.4.2)).
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2.4.1 Maxwell’s Equations in a Conducting Medium

In each layer and substrate the electric and magnetic fields must obey Maxwell’s equations.

In a lossy medium which is homogeneous, linear and isotropic the equations are defined

by

∇×E = −∂B
∂t

(2.1)

∇.D = 0 (2.2)

∇×H = J +
∂D
∂t

(2.3)

∇.B = 0 (2.4)

describing the behaviour for electric, E, and magnetic, H, field vectors, which are related

by the constitutive relations D = εE and B = µH. As is usual take the curl of the first

equation and using (2.3) and the constitutive relations we get

∇×∇×E = −µ
∂J
∂t
− µε

∂2E
∂t2

(2.5)

using the identity ∇×∇×E = ∇(∇.E)−∇2E and equation (2.2), we have

∇2E− µε
∂2E
∂t2

= µ
∂J
∂t

+∇
(

ρ

ε

)
(2.6)

where J = σE is the conduction current in the medium, and ρ the charge density in the

medium. There is a similar equation for the magnetic field

∇2H− µε
∂2H
∂t2

= ∇× J (2.7)

Now substituting for the conduction current in each medium and assuming no sources,

ρ = 0, we find, in a lossy material medium, the wave equations

∇2E− µε
∂2E
∂t2

− σµ
∂E
∂t

= 0 (2.8)

∇2H− µε
∂2H
∂t2

− σµ
∂H
∂t

= 0 (2.9)
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The last terms σµ∂E
∂t , σµ∂H

∂t attenuate the propagating wave in the medium so it loses

some of its energy, ie it is absorbed. Notice that the equation above could have been

written in the form

∇2E− µ
∂

∂t

(
∂D
∂t

+ J
)

= 0 (2.10)

where the first term in brackets is the displacement current and the second the conduction

current. It is known that media with displacement current much greater than conduction

current are lossless and an EM wave will propagate through the medium such that its

velocity through that medium is determined by the quantities µ, ε in the following manner

v =
1√
µε

=
1√
µrεr

1√
µ0ε0

=
c√
µrεr

=
c

N
(2.11)

where µr = µ/µ0, εr = ε/ε0, N =
√

µrεr are the relative permeability, relative permittivity

and refractive index of the medium, c is the speed of light in a vacuum. So the wave

equation in a lossless medium (eg free space, air, dielectrics) reads

∇2E− 1
v2

∂2E
∂t2

= 0 (2.12)

For media which have the conduction current much greater than the displacement current

the wave equation can be replaced by a diffusion equation where the EM wave is strongly

attenuated and may eventually be completely absorbed in the medium. The equation in

a conductor becomes

∇2E− σµ
∂E
∂t

= 0 (2.13)

for all intents and purposes the equation governing the propagation of an EM wave in iron

is (2.13). For the iron oxides which are good conductors at high temperatures, it would

seem that, at first, they too would be described by (2.13). However, their conductivity

is quite small at lower temperatures and always less than that of iron. Also, some of the

iron oxides possess other ‘ conductive ’ loss mechanisms which are controlled by both their

permittivity and their permeability. So the entire equation (2.8) must be used in their

case.
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2.4.2 Plane Wave Solution

Substituting for a plane wave

E = E0e
i(k.r−ωt)ê (2.14)

with unit vector ê in the direction of E. Note that the analogous plane wave for the

magnetic field can be expressed in terms of the electric field as

H =
1

µω
k×E =

N

cµ
k̂×E (2.15)

where N is the refractive index of the medium and k = kk̂ = (N/cω)k̂ is the wave vector

in the direction of the plane wave E. We get an equation of the form

−k2E + µεω2E + iσµωE = 0 (2.16)

or

k2 = ω2µε + iωσµ = ω2µ

(
ε +

iσ

ω

)
(2.17)

where the dispersion relation for the wavenumber k can be complex since ω is real. This

value of k is often called the complex phase propagation constant and the expression

k = ±[Re(k) + iIm(k)] = ±(α + iβ) (2.18)

defines the real and imaginary parts given by

α = ω

√
µε

2

√√√√
√

1 +
(

σ

ωε

)2

+ 1 (2.19)

β = ω

√
µε

2

√√√√
√

1 +
(

σ

ωε

)2

− 1 (2.20)

notice that the second term β is only non-zero if ω 6= 0 so the extra complex term is the

factor which produces the absorption. Both the velocity and wavelength of the initial EM

wave are decreased by the factors

vmedium =
ω

α
(2.21)
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λmedium =
2π

α
(2.22)

then the medium is dispersive. This gives rise to attenuation defined by the skin depth

∆ =
1
β

=
2α

ωµσ
(2.23)

for a purely conducting medium this is more often seen written as

∆ =

√
2

ωµσ
(2.24)

This describes the decay of the wave in the medium.

We may also express the refractive index of the medium in terms of the real and imaginary

parts of the wavenumber k by

N =
c

v
=

ck

ω
=

(
cα

ω

)
+ i

(
cβ

ω

)
(2.25)

= Re(N) + Im(N) ≡ Nr + iNi ≡ n + iη (2.26)

where

Re(N) =
cα

ω
= c

√
µε

2

√√√√
√

1 +
(

σ

ωε

)2

+ 1 (2.27)

Im(N) =
cβ

ω
= c

√
µε

2

√√√√
√

1 +
(

σ

ωε

)2

− 1 (2.28)

this second imaginary part of the refractive index is often called the attenuation factor η.

Note that since ω = 2πv/λ, where v is the attenuated velocity in the medium, the above

indices can be expressed in terms of the wavelength instead of the angular frequency, ω.

This analysis can be extended further by investigating the actual motion of electrons in

the medium of interest with the use of the differential equation

F = ma = −eE− ξv (2.29)

where the net force F = ma on the electron of charge e is due to the electric field E of the

incident radiation and a frictional force described by the parameter ξ. Defining the static

value of conductivity as

σ0 =
N e2

ξ
(2.30)
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where N is the number of electrons per unit volume. Substituting for a plane wave and

finding a solution in terms of v = v0e
−iωt and defining a free current density Jf = −N ev =

σE we get

σ(ω) =
σ0

1− i(σ0mω/N e2)
(2.31)

(see, [94]). This may also be expressed in terms of real and complex conductivities as

σ = σr + iσi =
σ0

[1 + (σ0mω/N e2)2]

[
1 + i

(
σ0mω

N e2

)]
(2.32)

as before, the extra complex conductivity can be incorporated into the equations (2.27)

and (2.28) as follows

α = ω

√
µ(ε− σi/ω)

2

√√√√
√

1 +
(

σr

ω(ε− σi/ω)

)2

+ 1 (2.33)

β = ω

√
µ(ε− σi/ω)

2

√√√√
√

1 +
(

σr

ω(ε− σi/ω)

)2

− 1 (2.34)

or

α = ω

√
µε

2




(
1− σi

ωε

)
+

√(
1− σi

ωε

)2

+
(

σr

ωε

)2



1
2

(2.35)

β = ω

√
µε

2


−

(
1− σi

ωε

)
+

√(
1− σi

ωε

)2

+
(

σr

ωε

)2



1
2

(2.36)

then the refractive index is defined by

Re(N) = c

√
µε

2




(
1− σi

ωε

)
+

√(
1− σi

ωε

)2

+
(

σr

ωε

)2



1
2

(2.37)

Im(N) = c

√
µε

2


−

(
1− σi

ωε

)
+

√(
1− σi

ωε

)2

+
(

σr

ωε

)2



1
2

(2.38)

retrieving the case σ = σr when σi = 0. We now have the conductivity depending on the

frequency ω reducing back to σ0 if ω = 0. Also the current density and electric field are

not in phase any more. The real part of σ gives a current in phase with the electric field

but the complex part σi produces one completely out of phase. We have
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• large friction ⇒ σ ' σ0 a constant, this holds mainly for metals such as iron.

This holds for frequencies into the microwave region so we may approximate the

conductivity of iron as a constant σ0, σi ' 0.

• Small friction ⇒ a plasma not considered here.

It is possible to further extend the investigation of conductivity in terms of a force equation

on charge carriers as above, with the inclusion of a mechanical restoring force on an

electron Fm = −meω
2
0r depending on position (ω0 the natural frequency of oscillation of

the charge), frictional damping Fd = −meγv and a Lorentz force Fl = −e(Ep + v ×Bm)

where Ep and Bm are the induced fields. Now the refractive index is given generally by

n + iη =

√
κm

(
κe +

iσ

ωε0

)
(2.39)

where κm = 1 + χm = µr or µ = κmµ0 is the relative permeability and κe = 1 + χe = εr

or ε = κeε0. Then the general dispersion theory with the inclusion of free electrons gives

for the refractive indices

n2 − η2 = 1 +
N
ε0

∑

j

nj(e2/me)(ω2
j − ω2)

(ω2
j − ω2)2 + (γjω)2

− σ2
0me/N0ε0e

2

1 + (σ0meω/N0e2)2
(2.40)

2nη =
N
ε0

∑

j

nj(e2/me)γjω

(ω2
j − ω2)2 + (γjω)2

+
(σ0/ωε0)

1 + (σ0meω/N0e2)2
(2.41)

where N is the number of molecules per unit volume, nj is the no of electrons characterised

by the natural frequency ωj and damping constant γj . We have summed over all types

of electrons of the above frequencies. Note that this is the result for κm = 1 no magnetic

effects are included. Often these effects are incorporated into the permittivity by the

addition of a factor ε” ie

ε = ε′ − iε”− iσ

ω
(2.42)

a similar procedure is adopted for magnetic losses characterised by an analogous expression

µ = µ′ − iµ” (2.43)
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these two contributions represent the κe and κm factors present in the refractive index

equation (2.39) above. This is the representation for a general lossy medium. Here we

involve the natural frequencies of vibration of the electrons in the medium. For metals

at low frequencies no noticeable difference is found from the constant conductivity case

but the differences start to show up in the infrared and visible portions of the spectrum.

These frequencies start to be comparable to the natural frequencies of some of the bound

electrons. If this is the case we must deal with the general expressions (2.40) and (2.41),

[94].

2.5 Boundary Conditions at an interface

A plane wave travelling in a medium of electrical properties µ1, ε1, σ1 is incident upon

a second medium separated from the first by an interface S having boundary curve C.

The second medium is characterised by µ2, ε2, σ2. Then the boundary conditions for the

electric and magnetic fields across C are given by (see for example, [63])

n̂× (E2 −E1) = 0 (2.44)

n̂.(ε2E2 − ε1E1) = 0 (2.45)

n̂× (H2 −H1) = 0 (2.46)

n̂.(µ2H2 − µ1H1) = 0 (2.47)

for linear isotropic and homogeneous media 1 and 2, where n̂ is the unit normal to C

taken from region 1 into region 2. The first and third conditions merely state that the

tangential electric and magnetic field vectors on both sides of the surface are continuous.

The other two state that the normal components of the electric and magnetic flux densities

are continuous across C. These boundary conditions are true for media without surface

charges or currents on the surface S. They apply to static or time varying fields and as

such are applicable to the propagation of EM waves through several different media.
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They will be used in conjunction with an incident plane wave to describe the reflection

properties of iron-oxide layers on an iron substrate.
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Chapter 3

Interference in Plane Layered

Media

3.1 Introduction

The first section is devoted to the detailed derivation of singlefilm interference phenomena

by the use of Maxwell’s equations of electromagnetics. This is detailed because of some

delicate manipulations of the electric and magnetic fields as well as an investigation of

phase changes in the oxide film. This developed theory is then extended straightforwardly

to multilayer films, the main object of investigation. It must be remembered that we

are dealing with several oxide films, not just one, as has already been considered in the

literature.

There is an additional note on Snell’s law which has been found non-applicable to finite

surfaces unless certain conditions are satisfied. Quite reasonably, Snells law has always

been considered valid and it is shown to be true here as well.

The final section considers the consequences of a flat surface solution comparing a smooth

unoxidised one to an oxidised one. The three specific areas which are addressed include

how the emissivity varies with thickness of oxide layer, ie interference properties, how it

35
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changes with wavelength and the effect temperature has. All of these areas are fundamen-

tal questions worth asking and is at least part of the purpose of the investigation.

The final section analyses the numerical data and compares it to the theoretical interpre-

tations of the previous section.

3.2 Electromagnetic Approach

In order to simplify the treatment of electromagnetic wave interference we will, for the

moment, restrict ourselves to the case of one film of oxide on an iron substrate rather than

three. This will be rectified by a straightforward extension of the one layer theory later

on in the analysis.

3.2.1 Single Layer Case

We are given that a monochromatic plane wave travelling in air of refractive index N1 = 1,

ie with free space electrical properties µ1 = µ0, ε1 = ε0, σ1 = σ0 = 0, is incident upon a

thin dielectric (oxide) film between two linear isotropic and homogeneous media (also true

of film). Consider Figure 3.2.1. The film has electrical properties µ2, ε2, σ2, N2 and the

substrate has µ3, ε3, σ3, N3 both refractive indices of which may be complex.

Then it is obvious that the electric and magnetic field vectors are constituted of incident,

reflected and transmitted waves. The boundary conditions at the interfaces 1 are given

by (N.B. the unit normal at both interface 1 and 2 is the same always in the z-direction)

n̂× (EI1 + ER1) = n̂× (ET1 + E′R2) (3.1)

n̂× (HI1 + HR1) = n̂× (HT1 + H′
R2) (3.2)

ε1n̂.(EI1 + ER1) = ε2n̂.(ET1 + E′R2) (3.3)

µ1n̂.(HI1 + HR1) = µ2,3n̂.(HT1 + H′
R2) (3.4)
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At boundary 2

n̂× (EI2 + ER2) = n̂×ET2 (3.5)

n̂× (HI2 + HR2) = n̂× (HT2 + H′
R2) (3.6)

ε2n̂.(EI2 + ER2) = ε3n̂.ET2 (3.7)

µ2n̂.(HI2 + HR2) = µ3n̂.HT2 (3.8)

Figure 3.2.1 The interaction of an incident electromagnetic wave with a single layer film

on a substrate
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following the earlier equations (2.44)-(2.47). Where I,R, T stand for incident reflected and

transmitted waves respectively. Note that all field vectors stand for the resultant sum of

waves travelling in their particular direction at that point in the medium. For simplicity

we will deal with a plane wave which is polarised perpendicularly with respect to the plane

of incidence defined as the plane constructed from the incident wave vector kI1 and the

unit vector in the z direction, k̂. This arbitrary choice is completely general. We use the

notation of Hect & Zajac, [40].

The incident angles at each interface are written θI1, θI2, the refraction angles θT1, θT2, the

reflection angles θR1, θR2 notice that θT1 = θI2. The ” ’ ” superscripts refer to secondary

reflections and transmissions at the film/air interface (2 → 1). For example the incident

angle that the reflected wave E′
R2 makes at the interface as it travels from the film into

the air is designated by θ′I2, note θ′I2 = θR2.

Then at boundary 1 using the boundary condition above, that is, that the tangential

components of E are equal on the interface where the normal n̂ = k̂

E1 = EI1 + ER1 = ET1 + E′
R2 (3.9)

using the fact that H = N
cµ k̂×E and since E is already tangent to the interface

H1 = HI1(tang)
+ HR1(tang)

= HT1(tang)
+ H ′

R2(tang)
(3.10)

then define normal and tangential unit vectors t̂ = î, n̂ = k̂. Then, since the electric field

is perpendicular to the plane of incidence, t̂ = ÊI1 × n̂, we find

HI1 .̂t =
N1

cµ1
(k̂I1 ×EI1).(ÊI1 × n̂) (3.11)

=
N1

cµ1
[(kI1.EI1)(EI1.n)− (kI1.n)(EI1.EI1)] (3.12)

= −EI1N1

cµ1
(kI1.n) (3.13)

since kI1.EI1 = 0 (perpendicular to each other)

HI1 = −EI1N1

cµ1
cos(π − θI1) (3.14)
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=
EI1N1

cµ1
cos θI1 (3.15)

similarly

HR1 =
ER1N1

cµ1
cos(π − θR1) (3.16)

= −ER1N1

cµ1
cos θR1 (3.17)

therefore we find

HI1(tang)
+ HR1(tang)

(3.18)

=
N1

cµ1
(EI1 cos θI1 − ER1 cos θI1) (3.19)

since by the laws of reflection θR1 = −θI1, also for the RHS

HT1 =
ET1N2

cµ2
cos θT1 (3.20)

now since θT1 = θR2 = θ′I2 = θI2 then

HT1 =
ET1N2

cµ2
cos θ′I2 (3.21)

similarly

H ′
R2 = −E′

R2N2

cµ2
cos θ′I2 (3.22)

so the RHS is

HT1(tang)
+ H ′

R2(tang)
=

N2

cµ2
(ET1 − E′

R2) cos θ′I2 (3.23)

finally at boundary 1

N1

cµ1
(EI1 cos θI1 −ER1 cos θI1) =

N2

cµ2
(ET1 −E′

R2) cos θ′I2 (3.24)

a similar procedure at boundary 2 leads to :

E2 = EI2 + ER2 = ET2 (3.25)

H2(tang)
= HI2(tang)

+ HR2(tang)
= HT2(tang)

(3.26)

=
N2

cµ2
(EI2 −ER2) cos θI2 =

N3

cµ3
ET2 cos θT2 (3.27)

(NB : E components are already tangent to the boundary).
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Phase Changes in the Film

Observe Figure 3.2.2

Figure 3.2.2 Phase changes inside the one-layer film

The distance travelled inside the film from boundary 1 to boundary 2 is given by

cos θI2 =
d

b
(3.28)

or

b =
d

cos θT1
(3.29)

the optical path difference for the first two reflected rays is

h = N2(AB + BC)−N1AD (3.30)
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using AB = BC = b

h =
2N2d

cos θT1
−N1AD (3.31)

now the distance c is given by

c = b sin θI2 = d tan θT1 (3.32)

now AC = 2c

AD = AC sin θI1 =
2d tan θT1

sin θI1
(3.33)

but using Snell’s law N1 sin θI1 = N2 sin θT1

AD =
2dN2 sin2 θT1

N1 cos θT1
(3.34)

therefore

h =
2N2d

cos θT1
(1− sin2 θT1) (3.35)

= 2N2d cos θT1 (3.36)

the phase shift is then calculated by δ = kh for a single traversing of the film. The phase

shift will be

kh = kN2d cos θI2 (3.37)

since θT1 = θI2. Then each of the electric fields EI2 and E′
R2 will have experienced this

phase shift thus they may be written

EI2 = ET1e
−ikh (3.38)

E′
R2 = ER2e

−ikh (3.39)

Now substitute for these in equations (3.25) we get

E2 = EI2 + ER2 (3.40)

or

ET1e
−ikh + E′

R2e
ikh = ET2 (3.41)
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similarly

H2 =
N2

cµ2
(ET1e

−ikh −E′
R2e

ikh) cos θI2 =
N3

cµ3
ET2 cos θT2 (3.42)

therefore

N2

cµ2
(ET1e

−ikh − E′
R2e

ikh) cos θI2 =
N3

cµ3
(ET1e

−ikh + E′
R2e

ikh) cos θT2 (3.43)

then we have two equations which may be solved for ET1 and E′
R2. Rewrite these to make

the calculation easier we have

E2 = ET1e
−ikh + E′

R2e
ikh (3.44)

H2 =
N2

cµ2
(ET1e

−ikh − E′
R2e

ikh) cos θI2 (3.45)

multiply (3.44) by N2
cµ2

cos θI2 and add to eliminate E′
R2 we get

H2 +
(

N2

cµ2
cos θI2

)
E2 =

2N2

cµ2
cos θI2ET1e

−ikh (3.46)

also multiply N2
cµ2

cos θI2 by E2 and subtract H2

(
N2

cµ2
cos θI2

)
E2 −H2 =

2N2

cµ2
cos θI2E

′
R2e

ikh (3.47)

Now using the previous two equations substitute from (3.44) and (3.45) above

E1 = ET1 + E′
R2 (3.48)

=

(
cµ2e

ikh

2N2 cos θI2

) [
H2 +

(
N2

cµ2
cos θI2

)
E2

]
+

(
cµ2e

−ikh

2N2 cos θI2

) [(
N2

cµ2
cos θI2

)
E2 −H2

]

(3.49)

=

(
eikh + e−ikh

2

)
E2 +

(
cµ2

N2 cos θI2

) (
eikh − e−ikh

2

)
H2 (3.50)

= E2 cos kh + H2

(
cµ2

N2 cos θI2

)
i sin kh (3.51)

and for H1

H1 =
N2

cµ2
cos θ′I2(ET1 − E′

R2) (3.52)

=
N2

cµ2
cos θ′I2

{(
cµ2e

ikh

2N2 cos θI2

) [
H2 +

(
N2

cµ2
cos θI2

)
E2

]
−
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(
cµ2e

−ikh

2N2 cos θI2

) [(
N2

cµ2
cos θI2

)
E2 −H2

]}
(3.53)

= H2 cos kh + E2i sin kh

(
N2 cos θI2

cµ2

)
(3.54)

or

E1 = E2 cos kh−H2

(
cµ2

N2 cos θI2

)
i sin kh

H1 = −E2

(
N2 cos θI2

cµ2

)
i sin kh + H2 cos kh

or 


E1

H1


 =




cos kh −i sin kh
γ2

−iγ2 sin kh cos kh







E2

H2


 (3.55)

or 


E1

H1


 = M1




E2

H2


 (3.56)

where γ2 = N2
cµ2

cos θI2 and M1 is the characteristic matrix of the film. Note that upon the

use of (3.9) and (3.25) we get



EI1 + ER1

γ1 (EI1 − ER1)


 = M1




ET2

γ3ET2


 (3.57)

which leads to the definition of the reflection and transmission coefficients R and T :

R =
ER1

EI1
and T =

ET2

EI1
(3.58)

and thus we get : 


R + 1

γ1 (1−R)


 = M1




T

γ3T


 (3.59)

or

R⊥ =
γ1m11 + γ1γ3m12 −m21 − γ3m22

γ1m11 + γ1γ3m12 + m21 + γ3m22
(3.60)

T⊥ =
2γ1

γ1m11 + γ1γ3m12 + m21 + γ3m22
(3.61)
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where γ1 = N1
cµ1

cos θI1, γ3 = N3
cµ3

cos θI3 and the mij ’s refer to the elements of M1.

A similar set of equations may be derived for the case of E parallel to the plane of incidence,

giving the matrix equation : 


E1

H1


 = M1




E2

H2


 (3.62)

identical to the perpendicular case except that

γ2 =
N2

cµ2 cos θI2
, γ3 =

N3

cµ3 cos θI3
(3.63)

that is

R‖ = −
(

γ1m11 + γ1γ3m12 −m21 − γ3m22

γ1m11 + γ1γ3m12 + m21 + γ3m22

)
(3.64)

T ‖ =
2γ1

(
cos θI1
cos θI3

)

γ1m11 + γ1γ3m12 + m21 + γ3m22
(3.65)

Note that we may express the reflection and transmission coefficients in a slightly different

way, [13], by considering the flat surface reflection coefficients for each boundary and

replacing the matrix elements by these. That is

r =
r1 + r2e

2iδ

1 + r1r2e2iδ
(3.66)

t =
t1t2e

iδ

1 + r1r2e2iδ
(3.67)

where r1,2 and t1,2 are the reflection and transmission coefficients at each interface 1 and

2. They are given by

r⊥1,2 =
N2,3 cos θI(1,2) −N1,2 cos θT (1,2)

N2,3 cos θI(1,2) + N1,2 cos θT (1,2)
(3.68)

t⊥1,2 =
2N1,2 cos θI(1,2)

N2,3 cos θI(1,2) + N1,2 cos θT (1,2)
(3.69)

r
‖
1,2 =

N1,2 cos θI(1,2) −N2,3 cos θT (1,2)

N1,2 cos θI(1,2) + N2,3 cos θT (1,2)
(3.70)

t
‖
1,2 =

2N2,3 cos θI(1,2)

N1,2 cos θI(1,2) + N2,3 cos θT (1,2)
(3.71)

for each kind of polarisation.
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3.2.2 Multiple Layer Case

Now this analysis may be extended to the case of multiple layers. Dealing for the moment

only with the perpendicularly polarised waves. The matrix M1 relates the fields at the

two adjacent boundaries, then we may say for two films



E2

H2


 = M2




E3

H3


 (3.72)

and similarly for three films :



E3

H3


 = M3




E4

H4


 (3.73)

or 


E1

H1


 = M1M2




E3

H3


 (3.74)

using (3.62) continuing this procedure to p films we get



E1

H1


 = M1M2M3...Mp




Ep+1

Hp+1


 (3.75)

where

M1M2M3...Mp = M =




m11 m12

m21 m22


 (3.76)

for the specific case of three layers we obtain

Mj =




cos khj
−i sin khj

γj

−iγj sin khj cos khj


 (3.77)

where hj = Njdj cos θij . Note that Snells law allows the calculation of the angles θTj

easily. For θT1 we have

N1 sin θI1 = N2 sin θT1 (3.78)

or

sin θT1 =
N1

N2
sin θI1 (3.79)
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and for θT2

sin θT2 =
N2

N3
sin θT1 =

N1

N3
sin θI1 (3.80)

so generally

sin θTj =
N1

Nj+1
sin θI1 (3.81)

so it follows cos θTj =
√

1− sin2 θTj , γj = Nj

cµj
cos θIj and j = {1, 2, 3, 4, 5}. Following a

similar procedure we get :

R⊥ =
γ1m11 + γ1γ5m12 −m21 − γ5m22

γ1m11 + γ1γ5m12 + m21 + γ5m22
(3.82)

T⊥ =
2γ1

γ1m11 + γ1γ5m12 + m21 + γ5m22
(3.83)

and for the case of parallel polarisation :

R‖ = −
(

γ1m11 + γ1γ5m12 −m21 − γ5m22

γ1m11 + γ1γ5m12 + m21 + γ5m22

)
(3.84)

T‖ =
2γ1

(
cos θI1
cos θI5

)

γ1m11 + γ1γ5m12 + m21 + γ5m22
(3.85)

With γj = Nj

cµj cos θIj
. The 3-layer substrate system is now ordered as follows : N1 is air (=

1), N2 is haematite, N3 is magnetite, N4 is Wustite and N5 iron. All angles are completely

analogous to the one layer case.

The reflectance and transmittance can then be calculated as follows :

Ry = RR∗ and Ty = TT ∗ (3.86)

where ”*” indicates the complex conjugate. The total reflectance can be expressed as an

average of the two kinds of polarisation :

Ry =
Ry‖ + Ry⊥

2
and Ty =

Ty‖ + Ty⊥

2
(3.87)

then emittance is easily calculated as

ε = 1−Ry (3.88)

where we have assumed that the transmission coefficient will tend to zero once the wave

passes into the steel substrate which is of course highly absorbing and infinitely thick.
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Note on Snells Law

The use of Snells law in the determination of angles of refraction has recently been shown

to be valid only when considering a plane wave incident on a surface of infinite dimensions,

[39]. If the surface is finite then the size of the surface, the angle of incidence and the

polarisation of the incident wave produce deviations in Snell’s law. Note that if the surface

dimensions are relatively large compared to the wavelength of the incident radiation this

problem is circumvented since the surface can then be taken as approximately infinite.

The same reasoning applies to rough surfaces where each scattering facet is of course not

infinite. However if each of these elements is very large in comparison to the wavelength

then we may use Snells law. This statement is supported by Bleistein & Handelsman, [12],

who show Snells law relations can be derived from the Kirchhoff solution for rough surface

scattering and state that Snell’s law is valid ‘ . . . for wavelengths small compared to the

fundamental body dimensions ’.

Snell’s law shall be assumed applicable in this thesis.

3.3 The Reflected Field

To get a feel for the difference in the reflection coefficients for a plane surface and that of

a layered one, we will consider the effect of an unlayered surface on the surface emissivity

of iron (steel).

3.3.1 Unoxidised Surfaces

Let the thickness of the layer tend to zero (h → 0) and choose the incidence angle as

normal (θI1 = 0), then the reflection coefficient of a substrate (iron) with a single layer

(FeO) is

R =
r1 + r2

1 + r1r2
(3.89)
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where

r⊥1 =
N2 −N1

N2 + N1
(3.90)

r
‖
1 =

N1 −N2

N1 + N2
(3.91)

r⊥2 =
N3 −N2

N3 + N2
(3.92)

r
‖
2 =

N2 −N3

N2 + N3
(3.93)

then for perpendicular polarisation

R⊥ =
N3 −N1

N3 + N1
(3.94)

R‖ = −N3 −N1

N3 + N1
(3.95)

of course independent of N2 as expected. Now, N1 = 1 since it is air then we have

R⊥ =
N3 − 1
N3 + 1

(3.96)

R‖ = −N3 − 1
N3 + 1

(3.97)

and N3 is the complex refractive index of iron, that is, it has the structure

N3 = n3 + iη3 (3.98)

therefore

R⊥ =
(n3 − 1) + iη3

(n3 + 1) + iη3
(3.99)

R‖ = −(n3 − 1) + iη3

(n3 + 1) + iη3
(3.100)

rationalise both to get

R⊥ =
(n2

3 + η2
3 − 1) + 2iη3

(n3 + 1)2 + η2
3

(3.101)

R‖ = −(n2
3 + η2

3 − 1) + 2iη3

(n3 + 1)2 + η2
3

(3.102)

the reflectivity is defined by

R⊥
y = R⊥R⊥∗ (3.103)
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R⊥
y =

(n2
3 + η2

3 − 1)2 + 4η2
3

[(n3 + 1)2 + η2
3]2

(3.104)

R‖
y =

(n2
3 + η2

3 − 1)2 + 4η2
3

[(n3 + 1)2 + η2
3]2

(3.105)

the average is

Ry =
R⊥

y + R
‖
y

2
(3.106)

=
(n2

3 + η2
3 − 1)2 + 4η2

3

[(n3 + 1)2 + η2
3]2

(3.107)

which gives an emissivity of

ε = 1− (n2
3 + η2

3 − 1)2 + 4η2
3

[(n3 + 1)2 + η2
3]2

(3.108)

How does the emissivity vary with the wavelength and the temperature ? Substitute for

the values of n3 and η3 from (2.27) and (2.28), that is

n3 =
1√
2




√
1 +

(
σ

ωε0

)2

+ 1




1/2

(3.109)

η3 =
1√
2




√
1 +

(
σ

ωε0

)2

− 1




1/2

(3.110)

then ε becomes

ε = 1−
(

σ
ωε0

)2




√
1 +

(
σ

ωε0

)2
+
√

2

√√
1 +

(
σ

ωε0

)2 − 1 + 1




2 (3.111)

It is obvious that, since iron or steel have large conductivities, if we take the limit as

σ →∞ the emissivity will tend to zero since the reflectivity approaches one. So we expect

very small emissivities for clean steel surfaces. This is indeed the case as shown in industry.

Now since ω = 2πc/λ expressing the function above in orders of λ we find

ε = O

(
1

λ1/2

)
+ O

(
1
λ

)
+ O

(
1
λ2

)
(3.112)
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so we expect the emissivity to vary with ε ∼ O(λ−1/2) for λ À 1 otherwise the extra terms

present in each denominator of each of the terms in (3.112) must be taken into account.

Similarly, if we choose terms for which λ ¿ 1 then the emissivity is approximately equal

to 1, ε ∼ O(1). It is possible to get a description for limited cases but the full expression

must be used for the general behaviour in between these two.

We also know that the conductivity of iron decreases with increase in temperature to a

first approximation as

σ ∼ 1
T

(3.113)

then we again expect an increase in emissivity with temperature of the order ε ∼ O(T 1/2).

This holds for temperatures approaching 1000oC beyond which the increase is considerably

smaller, in most cases levelling out at some constant.

3.3.2 Oxidised Surfaces

Making the same assumptions as for the unoxidised case except, d 6= 0, then the reflection

coefficient for a single film of oxide on top of iron, is

R =
r1 + r2e

2iδ

1 + r1r2e2iδ
(3.114)

where r1,2 are as before

r⊥1 =
N2 − 1
N2 + 1

(3.115)

r
‖
1 =

1−N2

1 + N2
(3.116)

r⊥2 =
N3 −N2

N3 + N2
(3.117)

r
‖
2 =

N2 −N3

N2 + N3
(3.118)

with δ

δ = kN2d =
2πN2d

λ
(3.119)
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so R becomes

R⊥ =
(N2 − 1)(N3 + N2) + (N3 −N2)(N2 + 1)e

2iN2dπ

λ

(N2 + 1)(N3 + N2) + (N2 − 1)(N3 −N2)e
2iN2dπ

λ

(3.120)

R‖ =
(1−N2)(N3 + N2) + (N2 −N3)(N2 + 1)e

2iN2dπ

λ

(N2 + 1)(N3 + N2) + (1−N2)(N2 −N3)e
2iN2dπ

λ

= −R⊥ (3.121)

Three important cases must be considered. The refractive index of the oxide can be written

N2 = n2 + iη2 (3.122)

then the exponential term becomes

e
2iN2dπ

λ = e
−2η2dπ

λ

[
cos

(
2n2dπ

λ

)
+ i sin

(
2n2dπ

λ

)]
(3.123)

Three consequences arise from this term

1. If the ratio η2dπ
λ → ∞ which can happen if either λ is very small or d is very large

(since n2 is always O(
√

λ), therefore not changing this result). Then the second lot

of terms in the reflection coefficients above reduce to zero and the Fresnel coefficients

become

R⊥ =
(N2 − 1)(N3 + N2)
(N2 + 1)(N3 + N2)

(3.124)

R‖ =
(1−N2)(N3 + N2)
(N2 + 1)(N3 + N2)

(3.125)

The case for iron gave us the two reflection coefficients

R = ±N3 − 1
N3 + 1

(3.126)

if we take the limit as N3 → ∞ which would happen for perfect conductivity then

R → ±1, producing a reflectivity close to one giving a very small emissivity close to

zero. Now adopt the same procedure for the oxidised case above

lim
N3→∞

R = lim
N3→∞

±(N2 − 1)(N3 + N2)
(N2 + 1)(N3 + N2)

(3.127)
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= ±N2 − 1
N2 + 1

(3.128)

a reflection coefficient not equal to one, in fact always being less than one in size,

unless N2 → ∞ as well. In fact, this is the reflection coefficient of pure iron-oxide

demonstrating that we will mainly observe Scale rather than iron in thermometry

experiments. This indicates the emissivity of oxidised surfaces will always be larger

than unoxidised ones. This is valid as long as either λ is small compared to d or d

is large compared to λ so we expect a large emissivity for small wavelengths which

will decrease as soon as this is no longer true. If, for example, the thickness and

wavelength become comparable to each other. Note that the wavelength dependence

is of the same form as the steel case ie ε ∝ λ−1/2, the temperature dependence now

relies on how the conductivity of FeO varies with temperature. It is known that the

conductivity of Wustite actually increases with temperature so the emissivity should

decrease with temperature in a similar manner to that of steel ε ∝ O(T−1/2), if the

temperature increase is linear.

2. If the ratio d/λ ∼ 0 which can happen if d is very small or λ is very large. Then the

reflection coefficient acts like that of clean steel which was discussed in the previous

section. So an oxidised surface ‘ looks ’ like an unoxidised one at long wavelengths

or very small oxide thicknesses.

3. The case where d/λ ∼ O(1). This is the most interesting case and gives rise to the

interference characteristics of layered media. The crucial term will be one of the

form

sin
(

4n2dπ

λ

)
e
−4η2dπ

λ (3.129)

this being a result of the oscillatory term and the decaying term in the exponential.

The sinusoidal part will tend to produce oscillations inside the oxide film as long as

d/λ is not too small. The decaying exponential will try to reduce these oscillations.

Since the sine term will always lie in the range ±1, the decay term will be of great

importance. If the absorption properties of the oxide layer, governed by η2, are
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small then many oscillations can take place. If the absorption is large however the

oscillations quickly die off.

When does this decay reduce the oscillations close to zero ? This is determined by

the term 2η2dπ
λ . Let us arbitrarily assign a size to this oscillation reduction. Let us

say that the oscillations are eliminated when

e
−4η2dπ

λ ' 0.01 (3.130)

this occurs when

d =
−λln(0.01)

4η2π
(3.131)

For some other choice instead of 0.01 say some small constant C = loge(const), then

oscillations cease at

dcritical =
λC

4η2π
(3.132)

this is the critical thickness at which oscillations cease. It may be compared to the

skin depth of the film or the depth to which a wave penetrates into the medium. If

we suggest that the number of skin depths required for oscillations to cease be

s∆ =
2sN2

cµ0σ2
(3.133)

where s is some real number and we have used the fact α/ω = N2/c, µ2 = µ0. Then

dcritical ' s∆ (3.134)

then the constant can be calculated as

C =
8sπ

cµ0

(
n2η2

λσ2

)
(3.135)

this constant then depends on the temperature via σ2 which has a significant tem-

perature dependence and through the individual real and imaginary parts of the

refractive index which can eliminate the wavelength since according to (2.27) and

(2.28) both n2 and η2 are proportional (approximately) to
√

λ this is also true to

some degree of conductivity. This constant C is mostly dependent on the simple

constants s, π, c, µ0. A comparison will be made when numerical solutions are pro-

duced.
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3.3.3 Instability of Emissivity at low thickness of Scale

It has already been pointed out that for small oxide thicknesses (cf d) the emissivity is

very small (that of steel) and depends on N3. Now the growth of oxide layers takes place

over time via the equation

d = K

√
te−

40500
RT (3.136)

where K is a constant, then as the thickness of oxide increases the emissivity must be less

under the control of N3 and come more under the influence of both N2 and the decaying

oscillations produced by the ratio d/λ. This means that the emissivity must be determined

more and more by the ratio N2−1
N2+1 this has the effect of a sudden increase in emissivity

from that of steel to that of the oxide (dependent on N2). Similarly the ratio d/λ is no

longer so small since as d increases the ratio tends more to one. Then oscillations take

place which decay away to a relatively constant value determined by the critical thickness

dcritical =
λC

4η2π
(3.137)

we may then calculate approximately the time taken for this critical thickness to be

reached, as the oxide grows, with the use of equation (3.136) above. The time is given by

tcritical =
(

dcritical

K

)2

e
40500
RT (3.138)

=
(

C ′λ
4πη2

)2

e
40500
RT (3.139)

(C ′ = C/K). So the time at which oscillations cease is determined by the temperature

of the steel/oxide, the wavelength the measurement (of emissivity) is taken at, and some

basic constants.

Emissivity Trends

In industry measurements are often made after the interference oscillations cease, a clear

reading can then be made since the emissivity remains relatively stable after these oscilla-

tions. It should be noted that as the thickness of the oxide increases further from zero then
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as a consequence so does the emissivity, becoming more that of oxide than steel. Once

this value is reached it remains constant (for constant λ) since d/λ is large and R depends

only on the ratio N2−1
N2+1 which is only a function of the electrical properties of oxide.

Alternatively if we keep the oxide thickness constant, this is possible when little growth

occurs after an initial spurt, the oxide slows its own growth to some extent, [78]. Then if

we increase the wavelength slowly from very small (cf d) the emissivity will at first be very

large due to the size of d/λ which implies ε = ε(N2). As the wavelength increases small

oscillations take place until the wavelength increases beyond O(d), d/λ ∼ 1 and the emis-

sivity must decrease until it comes into line with the emissivity of steel which decreases

as λ−1/2, λ large.
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Chapter 4

Numerical Solutions for Smooth

Surfaces

4.1 The Numerical Scheme

The relatively simple problem is to obtain data relating the emissivity ε to the variables :

temperature T , thickness of oxide layer d and wavelength of incident radiation λ. The pro-

cess is to first obtain the reflection coefficient, both parallel and perpendicular polarisation,

as a function of λ, d, T . This is achieved with use of the equations

R⊥ =
γ1m11 + γ1γ5m12 −m21 − γ5m22

γ1m11 + γ1γ5m12 + m21 + γ5m22
(4.1)

R‖ = −
(

γ1m11 + γ1γ5m12 −m21 − γ5m22

γ1m11 + γ1γ5m12 + m21 + γ5m22

)
(4.2)

where in each case the γj ’s are calculated by

γ⊥j =
Nj

cµj cos θTj
(4.3)

γ
‖
j =

Nj cos θTj

cµj
(4.4)

57
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for each case of polarisation. The electrical properties µj = µ0, εj = ε0 with the refractive

indices calculated with use of the equations

Re(N) =
cα

ω
= c

√
µε

2

√√√√
√

1 +
(

σ

ωε

)2

+ 1 (4.5)

Im(N) =
cβ

ω
= c

√
µε

2

√√√√
√

1 +
(

σ

ωε

)2

− 1 (4.6)

for each oxide, differing through the conductivities which are constructed from the graphi-

cal data of Adler, [2], and Davis, [26]. The mij ’s are calculated as cosine and sine functions

of the phase difference calculated via

kh = 2kN2d cos θT1 (4.7)

all angles computed with Snell’s law

sin θTj =
N1

Nj+1
sin θI1 (4.8)

The reflectivity is then calculated by multiplication of its own complex conjugate after

which an average of both kinds of polarisation is taken and then subtracted from 1 to

obtain the emissivity as a function of

ε = ε(λ, T, d) (4.9)

various graphical results can then be obtained for study under specific conditions.

The solutions written in FORTRAN are run on a VAX mainframe computer using NCAR

graphing routines.

4.2 Multi-Layer Oxide Films

The treatment of multilayer oxide films, that is, all three layers of iron-oxide on top of

steel will be along similar lines to that of the one layer case. For the solution for the

multilayer case one could, in principle, adopt a similar methodology to the one-layer case
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studied previously. However this is not straightforward and closed form solutions are not

easily simplified, as such the analysis of this case will be done with the use of a numerical

solution whose character is already typified in the one-layer case. We should expect the

following characteristic phenomena :

1. Depending on the electrical properties of the various oxides, as the film grows on

smooth steel, the first layer will be wustite, its effects have already been described.

We expect very low emissivities, that of steel, at first, then, an increase to that of

wustite and a period of oscillation which decays away over a critical time calculated

previously. The emissivity should now stay constant. If we increase the wavelength

it will start to penetrate the wustite layer provided the ratio d/λ becomes small.

The emissivity of steel is now approximated by an inverse square root law.

2. As the layers continue to grow the thickness of magnetite increases slowly in the ratios

1 : 0.04, compared to wustite. As soon as the thickness of magnetite approaches that

of the measurement wavelength we get interference and oscillations are produced in

a manner akin to that for wustite. The critical time for cessation of oscillations now

depends on the refractive index of magnetite rather than wustite. The emissivity

will now be read as that of magnetite plus some influence from the next layer down,

wustite. Again ε will remain constant unless the wavelength is increased and it

penetrates the two layers producing low emissivities of steel. This wavelength may

depend on not just the combined thickness of the two layers but also each of their

refractive indices (electrical properties).

3. Similarly, as the films continue to grow, eventually, the topmost, thinnest layer,

haematite, will start to influence the emissivity. As its thickness approaches the

incident wavelength the familiar oscillations will take place as well as the rise to

the emissivity of haematite (a combination with wustite and magnetite). Again, the

EM wave will be able to penetrate given a long enough wavelength. Note that for

each film, its conductivity, which depends on temperature, can effect the results in a



60 CHAPTER 4. NUMERICAL SOLUTIONS FOR SMOOTH SURFACES

complicated way. Generally however, we expect behaviour like that of the single layer

of wustite studied in section (3.3.2). This is true since it is typical of the behaviour

of the emissivity, given a layer of oxide, and because it is the major contributor to

the final emissivity, solely by the fact that it is the dominant layer present.

4.3 Interpretation and Discussion of Results

The graphical results of the numerical solutions will be now be analysed.

4.3.1 Comparison to Experimental Data

Figure 4.3.1 is a comparison of the experimentally obtained graphs of Tanaka & DeWitt,

[82], and the numerical simulation of one layer of wustite (FeO) on top of an iron substrate

at two wavelengths of emitted radiation : 1.6µm and 3.0µm. The numerical graph was

constructed on the basis of equation (3.136) to obtain a time axis by use of

t(secs) =
d2(mm)

575
e

40500
RT (oC)

For one layer 0f FeO, K = 575, R = 2.87 then 300 seconds at a temperature of 627oC

(900 oK) to a thickness of about

d =
√

300× 575× e
−40500

2.87×627 = 0.005mm = 5.38× 10−6m

notice that this time scale is not linearly related to the thickness and as such any di-

rect comparison must be taken as an approximation. The time scale so created allows a

crude comparison of layer growth over time with the experimental results. So a graph of

emissivity verses FeO thickness ranging from 5 × 10−8 − 5 × 10−6 was compared to an

experimental graph of emissivity verses time 0-300 seconds. The thicknesses corresponded

approximately to the times according to equation (4.3.1).

Note that for this comparison several sources of error exist :

1. The growth of iron-oxide is theoretically governed, on the average, by the exponential

rate law (3.136), this is of course a simplification and can only represent the basics
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of layer growth. Similarly, the accuracy of this law is based on the measurements of

the rate constants. Any deviation in accuracy can markedly effect results. Finally

the law is non-linear and so does not fit easily onto a linear graph over time as in

the experimental results. Since the time varies as the square of thickness earlier

calculated time values increase faster than later ones this gives rise to a distinctly

non-linear appearance to the graph and we expect the later stages of the graph to

change at a slower rate than the earlier stages.

2. Tanaka & DeWitt’s results are for carbon steel, the numerical ones are those of

iron. Unfortunately data relating to electrical properties of carbon steel were not

available. The comparison must be approximate at best.

3. The numerical solution was most suited to higher temperature ranges where the

magnetic properties of iron were negligible. The experimental temperatures are

below the Curie point and permeability effects may not be ignorable.

However upon comparison of both graphs we see :

• Strikingly similar behaviour of the two graphs as a whole. They follow the same trend

of a steep rise and then a region of oscillation due to interference in the iron-oxide

layer. Then there is the drop off and rise in the latter part of both graphs.

• Note that the emissivities at time zero (thickness = 5 × 10−8 m) are lower for the

iron graphs, this is to be expected since with the presence of carbon in the steel we

may expect a slightly higher emissivity since this acts as a dielectric and changes

the conductive properties so the refractive index is smaller.

• At both wavelengths the two graphs combine almost as an average of the experi-

mental results.

So, generally speaking, given the possible errors, the numerical solution gives a reliable

estimate of emissivity behaviour over varying oxide-layer thickness. We may feel confident

the model results will be relevant and accurate for use in further emissivity investigations.
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4.3.2 Comparison of One-Layer and Three-Layer Models

It was stated at the outset that the treatment of theoretical emissivity studies must be

constructed on the basis of the full three-layer (wustite, magnetite, haematite) model

rather than the more limited use of one of these as the basic oxide on steel. How do these

two models compare ?

Figure 4.3.2 shows the calculated emissivity graphs of the two models varying with wave-

length at a temperature of 800oC and a thickness of FeO of 0.2 mm. Wustite was chosen

as the thickness scale since it is the thickest of the oxides which form in the ratios 1 : 0.04

: 0.009 (wustite : magnetite : haematite). This implies that as the thickness of wustite

increases beyond the range of interference for its own thickness then the next thickest

layer, magnetite, must increase in thickness until it too reaches a point where its thick-

ness is comparable to the wavelength at which point we expect interference phenomena

to show up. Then for a wavelength of 2µm a thickness of haematite of about 2µm should

produce oscillations in the graph. This occurs at 1/0.009 × 2µm of wustite ∼ 0.22mm.

The variation of emissivity with wavelength is clearly seen occurring at dFeO = 0.2mm at

a wavelength of about 2µm. We notice that

• As the wavelength is increased beyond this interference region, and the oscillations

die out, the emissivity decreases with wavelength in much the same way as the one-

layer model except that it is larger. This is due to the fact that the refractive index

of haematite, magnetite and wustite combine to decrease the conductivities which

increases the corresponding emissivity. Compare this with section (3.3.2) where it

was shown that the emissivity observed at smaller wavelengths (IR) is that of the

oxide not of steel. This increase is due to the refractive index of the oxide. This

is a similar result except the the higher emissivity is due to the combined effects of

all layers, not the least of which is haematite which is responsible for interference

effects.

• Note that, as the wavelength is increased, the two models converge. This happens
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as the wavelength starts to penetrate the outer two oxides and eventually ‘sees’ only

wustite.

As a conclusion we have

1. The highest contribution to emissivity arises from the particular layer whose thick-

ness is comparable to the wavelength used in the measurement.

2. The three-layer model (FeO : Fe3O4 : Fe2O3) may be reduced to a one-layer model

of FeO only provided that the measurement wavelength is much longer than the

thickness of both magnetite and haematite.

3. For temperatures greater than 570oC all three layers of oxide exist. Therefore in

general we must use the three-layer model rather than just a one-layer model. How-

ever below this temperature the prevalent oxide is magnetite and we may use it as

a single-layer model.

4.3.3 Emissivity Change with Thickness

Observe Figures 4.3.5-4.3.8 and Figures 4.3.11 and 4.3.12. These graphs display the change

of emissivity with thickness of (equivalent) wustite at 1000oC for

1. different wavelengths Fig 4.3.5, 4.3.6, 4.3.11, 4.3.12

2. different temperatures Fig 4.3.7, 4.3.8

In each case the left most graphs are the single-layer model of wustite only and the

corresponding three-layer model is on the right hand side.

Figures 4.3.5, 4.3.6, T = 1000oC, λ : 0.1− 0.8µm, d : 0− 1µm

We see immediately that

• For the wavelengths and ranges of thicknesses chosen in either model little differ-

ences are obvious. Careful observation reveals slightly larger emissivity values for
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the three-layer case. This is expected because of the extra addition of the other

oxides, magnetite and haematite. For interference phenomena to show up we must

consider much larger thickness ranges. We do see interference effects present as os-

cillations about a mean curve for a wavelength of 0.1µm. Notice the similarity to

Figures 2.2.1-2.2.4 as typical experimental results. Interference also occurs for the

larger wavelengths 0.2-0.6µm at a thickness of about 0.5µm. The difference is that

the interference is of a much larger variation than that of the case for λ = 0.1µm.

The amplitudes of oscillation are very small for λ = 0.1µm whereas for λ = 0.2 and

0.6 µm they are quite prolonged and larger in height. This must be so because of the

small wavelength involved. The amplitude is then governed mainly by the refractive

index so that oscillations must occur about the mean emissivity curve rather than

causing large fluctuations which occur at longer wavelengths.

• Notice that the longer wavelengths, 6 and 8µm do not oscillate as much as the

smaller ones. This is expected as soon as the wavelength range starts to exceed

the interference region where both thickness and wavelength must be of the same

order. We wish to avoid this interference region in measurement so that a reliable

measurement may be made.

• The emissivitites of each curve decreases as the wavelength is increased, eg for λ =

0.1µm the emissivity is close to one whereas for λ = 0.8µm it is closer to 0.7. Once

again this implies longer wavelengths may ‘see’ through layers of Scale.

Figures 4.3.7, 4.3.8, λ = 0.4µm, T : 800− 1200oC, d : 0− 10µm

For both single and multi-layer models the usual interference oscillations are noticed.

Similarly, the increase from the emissivity of iron at zero thickness is rapid reaching the

emissivity of iron-oxide, which is close to 1. However, there is a marked difference between

the two models as we vary the temperatures from 800-1200oC. Now, since the conductivity
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of the oxides increases with increase in temperature so does the reflectivity which means the

emissivity must decrease. This is observed in the three-layer case but not for the one-layer

model. This reduction in emissivity is most prominent at the highest temperature 1200oC.

The decrease as a comparison with the highest and lowest emissivities in Figure 4.3.8 is

a jump in emissivity of ∆ε ' 0.1. This difference between the two models must be due

to either magnetite or haematite since the influence of wustite is recorded in Figure 4.3.7,

with no such a jump occurring. Most likely this is due to haematite since its conductivity

increases at a much faster rate than does magnetite. At a thickness of 10µm haematite

has a thickness of 0.09µm but a conductivity of close to 107Ω−1m−1 which is 100 times

that of either wustite or magnetite.

Figures 4.3.11, 4.3.12, T = 1000oC, λ : 0.2− 16µm, d : 0− 20µm

These two diagrams represent the large Scale thickness variation. The one-layer case

reaches the emissivity of wustite and stays constant over the whole thickness range at each

wavelength. The longer the wavelength the smaller the emissivity of course. However, the

three-layer model deviates from the one-layer case by a significant reduction in emissivities

as the wavelength is increased. At small wavelengths ε remains constant close to one. But

at wavelengths > 4µm there is gradual decrease in emissivity as thickness is increased.

This decrease takes place immediately after the oscillations cease. Since the temperature is

constant this decrease is due to the ratio d/λ where the thickness d represents the thickness

not only of wustite but magnetite and haematite. Now, since this ratio is present in the

term e−
4ηdπ

λ for wustite this term has already acted over the thickness range above, and

is no longer influential in changing the emissivity, it has already reached zero for smaller

thicknesses. For the other oxides this term diminishes the emissivity as the ratio d/λ

increases until it too no longer effects proceedings. This is the cause of the decrease in

emissivity. Notice too, the levelling off occurring in Figure 4.3.12 at longer thicknesses.
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4.3.4 Emissivity Change with Wavelength

This area of investigation includes Figures 4.3.3, 4.3.4 and Figures 4.2.9 and 4.2.10. The

first group contain graphs for different oxide thicknesses and the second graphs of varying

temperature. Both single and multi-layer models are involved.

Figures 4.3.3, 4.3.4, T = 1000oC, d = 0− 0.8µm, λ : 0.1− 10µm

Each graph contains the numerical solution for thicknesses d = 0, d = 0.4µ m and 0.8µ

m. A careful study of each graph shows the inevitable slightly larger emissivity values

for the three-layer model over the one-layer case. Oscillations occur at small wavelengths

and comparable thicknesses, notably the graph of d = 0.8µm at a thickness of about

λ ' 0.6µm. The oscillations almost disappear at d = 1.0µm. The d = 0 or unoxidised

case is included as a comparison.

We notice the following :

• The most striking feature is that, given a long enough wavelength, each of the graphs

asymptotes to the flat case. This is especially noticeable for the d = 0.8µm graph.

This effect for long wavelengths shows that radiometers whose wavelength lies in

the millimetre and centimetre range can approximately measure the temperature of

clean steel even if it has been oxidised. The longer wavelengths penetrate straight

through the outer oxide layers and reproduce the emissivity of clean steel at that

wavelength. Notice however that these readings are very low, of the order 0.02.

This implies the radiometer needs to be very sensitive in order to obtain a reliable

measurement and not be drowned out by environmental noise.

• We also see that the clean steel case, d = 0, is only reached at very long wavelengths

whereas a wide separation is noticed for the larger thicknesses. This again demon-

strates the large difference in emissivity for Scaled and clean steel. This implies

pyrometers must measure the emissivity of oxide, not steel.
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• We also recognise the fact that wavelength variation occurs via the rule

ε ∝ 1√
λ

Figures 4.3.9, 4.3.10, d = 0.4µm, T : 800− 1200oC, λ : 0.1− 10µm

Other than previously mentioned results, the only notable exception in these graphs is

that the emissivity increases with temperature slightly. For the three-layer model the

variation between each reading is spread over a wider emissivity range. No doubt this is

due to the influence of other oxide layers as already discussed.

Compare these results with those of Figures 2.2.5, 2.2.8 and 2.210. The experimental

trends agree well with the numerical simulation.

4.3.5 Emissivity Variation with Temperature

These diagrams include Figures 4.3.13-4.3.16. Again both models are represented. In each

case the emissivity variation with temperature is described for both different wavelengths

and thicknesses.

Figures 4.3.13, 4.3.14, λ = 0.4µm, d : 0− 0.8µm, T : 800− 1300oC

We obtain two basic results :

• For the one-layer model there is a slight increase in emissivity with temperature. For

the clean steel case this is expected from theory, see section (3.3.1) for a discussion.

The conductivity of iron decreases with temperature increase therefore decreasing

the reflectivity and thus increasing the emissivity, if only slightly. This gradual

increase is expected since at these temperature ranges conductivity decrease is only

very slight. Of course, the thicker the oxide the higher the emissivity. This trend

in temperature increase seems to be maintained for the one-layer model even in the

presence of wustite. This may be explained by the fact that wustite’s conductivity

changes little (over this temperature range) as does that of magnetite.
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• Comparison of the two models shows the drastic change in the graphical results

as we reach temperatures in excess of 1100oC. Beyond this point the emissivity

sharply declines for thicknesses > 0.2µm. This result must be due to the very high

conductivity of haematite at higher temperatures. As the thickness increases and

the temperatures reach large values the conductivity of haematite increases as high

as 106 or 107Ω−1m−1. We expect a sharp decline at such temperatures. Below these

thicknesses there is not enough haematite present to effect any noticeable change.

Figures 4.3.15, 4.3.16, d = 0.4µm, λ : 2− 10µm, T : 800− 1300oC

As for the previous data the one-layer case has a gradual increase with temperature at

different wavelengths. However the three-layer model shows most unusual behaviour.

First, there is an increase in emissivity followed by a levelling out and a decrease. A

comparison with Figures 2.2.6, 2.2.7 and 2.2.9 shows both of these trends. They show

the emissivity increase for clean metal surfaces, as expected, and the emissivity decrease

for oxidised ones. As well, they show this rise and fall behaviour, see Figure 2.2.7. Once

again, this variation must be due to the extra oxide layers magnetite and haematite. It

is also seen that smaller wavelengths do not possess this behaviour, but only seem to

remain steady and then start to decrease at higher temperatures as expected. The larger

wavelengths give rise to this extra increase. Certainly, the decrease is due to haematite

conductivity. The initial increase must arise from the larger wavelengths. This effect must

be due to a combination of both temperature and wavelength. It may be a complicated

interaction with temperature and wavelength, possibly a kind of interference due to both

of them.

4.3.6 Final Conclusions for the Smooth Case

General Conclusions

1. If the measurement wavelength is larger than the thickness of wustite, that is, larger

than all oxides, then the three-layer model approximates to the one-layer case.
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2. If the wavelength of measurement is much larger than the combined thicknesses of

all oxides then the emissivity will be nearly that of pure steel.

3. If either of the above two conditions are not satisfied the complete three-layer model

must be used.

In the introduction the additional variables : absorption, three layers of oxide and semi-

conducting properties of each oxide were discussed. It is found that each of these three

additions is a worthwhile extension of previous investigations, with absorption properties

accounting for extra features such as decrease in emissivity oscillations and decrease in

emissivity for multi-layer models. The three-layer model presents us with extra behaviour

such as unusual temperature variation, interference at large oxide thicknesses and emis-

sivity decrease with temperature. The semiconducting properties of the oxides induced

the sharp temperature decreases and the interaction phenomena between temperature and

wavelength.
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Part III

The Optical Problem-Irregular

Surfaces
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Chapter 5

Rough Surfaces

5.1 Introduction

There are several important areas of consideration when discussing rough surfaces. The

first section of this chapter discusses what surfaces are rough, what makes them rough,

and why is this an important contributor in temperature measurement in industry. Next,

we consider what sort of rough surfaces are possible and how to characterise them. All of

these sections are necessary for an understanding of the industrial problem.

We next analyse the techniques that have been used to study rough surface scattering

and where they are applicable. Also included, is a section on two areas of scattering not

often considered : multiple scattering and surface shadowing. A most important area of

consideration is : which parts of a rough surface contribute the most to the scattered field.

It is shown that only a small section of the illuminated area of the surface needs to be

considered.

We also give a detailed review of theoretical and experimental research to highlight the

main emissivity characteristics and those areas not yet explained by theory. The theories

used in research are mentioned with detailed reviews already available elsewhere, these

are given where appropriate.

73
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5.2 The Nature of Rough Surfaces

Previously we were concerned with the scattering of radiation off plane or optically smooth

surfaces. As is well known, all of the incident radiation is scattered in the specular direc-

tion. However, real surfaces are never smooth and flat, but are, what is generally called

‘rough’.

If this is the case why does one study the plane case at all ? The answer to this question

lies in the fact that not only are some surfaces flat in the usual sense, for example polished

metal, but a surface ‘looks’ smooth when observed at certain frequencies of light. For

example, unpolished sheet metal is smooth with regard to radio waves but rough in the

case of ordinary visible light, [8]. Similarly, the glare perceived from a road surface may be

observed at sunset but not at noon. So, in some cases a surface can be regarded as smooth

and essentially flat. If this is the case then the investigation of plane surface scattering is

of great importance.

For our present case we are given steel sheets that are hot rolled, and as such, we are

presented with several different types of surface roughness :

(i) The induced roughness due to the shape of the roller itself, this imbues the surface

with large scale undulations.

(ii) Small scale roughness due to the steel surface crystalline structure and environmental

conditions at the time of cooling, that is, all surfaces are rough unless polished or

smoothed in some way.

(iii) Lastly, small scale roughness present on either smooth or rough steel surfaces due to

the processes of oxidation, sulphurisation or other reaction mechanisms occurring in

industry. This type of roughness may be of a different scale to that of (ii).

A more accurate definition of surface roughness will now be considered.



5.3. THE RAYLEIGH CRITERION 75

5.3 The Rayleigh Criterion

We are interested in the question of when is a seemingly smooth surface rough ? The

simplest approach to this problem was studied by Rayleigh in 1877 and is still used today

because of its relative simplicity.

Consider a plane monochromatic electromagnetic wave incident upon a rough surface at

an incident angle θ1 and scattered at an angle θ2 from two points on the surface in the

(x, z) plane of incidence as shown in Figure 5.3.1

Figure 5.3.1 Phase changes for a wave incident upon a rough surface, [57]

The phase difference between the two scattered rays is given by, [57] :

∆φ = k[(h1 − h2)(cos θ1 + cos θ2) + (x2 − x1)(sin θ1 − sin θ2)] (5.1)

where k1 = k2 = |k| = k, the wavenumber of the incident and scattered waves, x1 and

x2 are the x-coordinates of the scattering points of height h1 = h(x1) and h2 = h(x2)
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respectively, where the surface is represented by the function h = h(x) measured from the

mean plane defined by z = 0.

For specular scattering, θ1 = θ2, the phase difference becomes

∆φ =
4π

λ
∆h cos θ1 (5.2)

where ∆h = h1 − h2. Two obvious cases for the phase difference exist

• ∆φ = π or ∆φ ∼ π

• ∆φ ¿ π or ∆φ ∼ 0

The first case is when the two waves are π out of phase and interfere destructively thereby

producing no energy flow in the specular direction, instead it is redistributed into other

directions. Therefore the surface is rough for ∆φ ∼ π. For the second case, if the phase

difference between the waves is negligible then they will constructively interfere directing

most of the scattered energy in the specular direction. Therefore when ∆φ ∼ 0 the surface

can be considered smooth as in the flat case.

We observe that a surface is smooth only when either

• ∆h
λ ∼ 0

• θ1 ∼ π
2

So a surface is smooth for either very large wavelengths, eg. radio waves on a rough steel

surface, or small surface undulations, eg. polished steel surface. It is also smooth if the

angle of incidence is close to π/2 or the wave impinges at grazing incidence, eg road glare.

Similarly a surface is considered rough if

4
λ

∆h cos θ1 ' 1 (5.3)

that is, if the incident wavelength is small or the angle of incidence is close to the surface

normal, [57]. Therefore, one cannot state the degree of roughness without reference to the

radiation being scattered, [57]. So the scale of roughness is then determined, in the main,
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by a ratio of the form ∆h/λ. This ratio is often replaced by σ/λ where σ is the root mean

square deviation of the surface height from the smooth. The importance of this parameter

will be made clear, presently.

Note that the dividing line between rough and smooth surfaces is often stated as ∆φ < π/2

which is chosen somewhat arbitrarily, the above approach is certainly clearer.

5.4 Scattering Characteristics of Rough Surfaces

Consider the two cases

(i) Smooth surface having ∆h = 0 everywhere

(ii) Non-smooth surface with ∆h 6= 0 generally

For (i) we find from (5.1), above, that the phase becomes

∆φ =
2π

λ
(x2 − x1)(sin θ1 − sin θ2) (5.4)

smooth surfaces in the specular direction produce ∆φ = 0 giving a strong specularly

scattered field. However for θ1 6= θ2 we find the phase difference is large since the surface

dimensions are large and generally x1 − x2 À λ/2 producing destructive interference and

no scattered energy. This implies that an infinite smooth surface scatters energy only in

the specular direction.

If the maximum size of the surface is restricted to a length of 2L then the largest separation

in scattering points gives a phase difference of

∆φ =
4πL

λ
(sin θ1 − sin θ2) (5.5)

then strong scattering can occur depending on the dimensions of the surface and the inci-

dent wavelength. This scattering will of course occur mainly about the specular direction

since the dimensions of scatterers are often much larger than the incident wavelength.
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Now for (ii), in the specular direction, the phase difference is given by (5.1) if this is much

less than π then the surface appears smooth. If however the phase becomes comparable

to π, cancellation and much less incident radiation is scattered in the specular direction

and more is directed in the remaining directions.

For non-specular scattering of (ii) we no longer have a smooth surface, (h1 = h2), and the

phase is generally determined by the height undulations across the surface.

Figure 5.4.1 Polar plots showing the scattered intensity of the incident field for : (a) A

plane surface, strong coherent field, (b) Slightly rough surface, some diffuse scattering,
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(c) Very rough surface, strong diffuse scattering, [57].

Generally the energy scattered in the specular direction as mentioned above, in (i), has a

strong ‘lobe’ (of energy) in this direction, it is often called the coherent wave as shown in

Figure 5.4.1. This field is usually calculated as an average over the phase of the scattered

wave. Similarly, the strongly scattered wave having almost no direct phase relationship to

the incident wave is called the incoherent or diffuse wave. This field must be calculated

by averaging the intensity, [57].

The different cases of scattered energy distribution over scattering angles θS is shown,

Figure 5.4.1. For further analysis of the coherent and diffuse fields and their phases refer

to Beckmann & Spizzichino, [8] or Bass & Fuks, [6].

5.5 Rough Surface Types

Rough surfaces, that is, surfaces which deviate in their height from a mean plane can

usually be classified into three separate cases :

(i) Those surfaces whose height distribution from the mean is known, for example surfaces

whose height is a known function of the variables, ζ = ζ(x, y), where ζ is a function

representing the surface in the usual (x, y, z) coordinate system. Note that many

coordinate systems are possible including cylindrical coordinates and coordinates

fitted to the surface. A typical example would be a periodic function or one generated

as a Fourier series of periodic functions.

(ii) Random rough surfaces, meaning those surfaces where the height distribution (from

the mean plane) ζ = ζ(x, y) is an unknown function of the random variable ζ(x, y)

at each point (x, y). The distribution of surface heights is then given in terms of a

height probability distribution (often assumed Gaussian). Note that several types

of these surfaces exist including those generated by stochastic processes and those

made up of a planar array of objects. the random process may be continuous or
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discrete. For a fuller discussion see, [8].

(iii) Surfaces whose structure is described in terms of Fractals, or surfaces having structure

on all scales, and whose dimension is not necessarily an integer. For example fractal

surfaces may have a dimensionality between 1 and 2. These surfaces cannot be

described statistically as those in (ii). Many natural surfaces may be considered

fractal for example the growth of oxidation films on metals, [53].

5.6 Rough Surface Statistics

Rough surfaces are often described in terms of the deviation of the surface heights from

some mean plane or reference surface. As already mentioned the height variations from the

mean are expressed as a height probability distribution p(ζ) where this is the probability

of any point of the surface being located at some height ζ away from the mean surface.

Generally the average height is then zero.

An important parameter derived from the above definition is that of root mean square

height of the surface which is the standard deviation usually written σ.

Many other parameters exist to define the roughness characteristics, but probably the

most important of them is the surface correlation function. This is required to assist in

describing the change of a random function over different length scales, [57]. It is often

assumed Gaussian as follows :

C(R) = e
−R2

λ0 (5.6)

where λ0 is the well known correlation length relating the rate of change of surface height

with distance along the surface, [57].

For a full discussion of rough surface statistics refer to Ogilvy, [57], Bass & Fuks, [8] or

Beckmann & Spizzichino, [6].

In this thesis we will only consider periodic surfaces, that is, surfaces of the type where
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the surface undulation, ζ, away from the the mean is described by

ζ = A sinKx (5.7)

where A is the amplitude, related to σ and K = 2π/T , T the period of surface peaks or

troughs, with A/T being related to λ0. These two parameters A and A/T describe the

roughness of a sinusoidal surface. The amplitude is the maximum variation away from the

mean and A/T the gradient of surface slopes.

5.7 Physical and Geometrical Optics

We are interested in solving the problem of the scattering of electromagnetic waves from

a rough surface. This is an optical problem and can be attacked in two fundamental ways

via Geometrical Optics or as a problem in Physical Optics.

5.7.1 Geometrical Optics

When studying the interaction of electromagnetic radiation with objects or surfaces it

is often valid to neglect the wave nature of light and deal with the propagation of the

radiation in terms of light rays. This is known as geometrical optics and corresponds to

the limiting case of λ → 0 (wavelength of light). Obviously then optical laws may be

constructed via the laws of geometry, [13].

This is only possible if the dimensions of the scatterer are much larger than the wave-

length of light used in the scattering experiment. This may at first seem irrelevant to

our problem, but if, in fact, the ratio σ/λ, the RMS surface height, compared with the

wavelength of incident radiation is large enough, geometrical optics can be applied. This

ratio is analogous to our A/λ which will be the critical parameter for rough surfaces in this

thesis. Additionally, even though most scattering problems are analysed using the theory

of diffraction, in some cases certain approximations from geometrical optics are used, eg

Kirchhoff boundary conditions on a rough surface. This last point forms the starting point
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for the solution of the scattering problem in this thesis.

Note that it is possible to extend the theory of geometrical optics to include the effects of

diffraction and this is called the Geometrical Theory of Diffraction, [45].

5.7.2 Physical Optics and Diffraction

A more precise treatment of the optical problem when the dimensions of the scatterer

become comparable to the wavelength of light is that of physical optics, [40]. In this case

the wave nature of light is the dominant characteristic guiding the solution of the problem.

The laws of geometrical optics are no longer valid because they ignore the significance of

the wave nature of electromagnetic radiation.

So, the case where the ratio σ/λ ∼ 1 or σ/λ < 1 is of concern in the present problem.

Note that physical optics is not specifically restricted to small ratios of σ/λ but in fact

covers the spectrum from large values to fairly small. We will refer to the ratio σ/λ as

the optical roughness of the surface from now on. Generally the case where the optical

roughness of an object approaches one, deals with the area of physics known as the diffrac-

tion of light. This treatment requires analysis of Maxwell’s equations in detail and usually

leads to the solution of the problem at hand in terms of some wave equation. Generally

the equations of electromagnetics are vector equations relating the electric and magnetic

fields to each other in some region of interest. As such, two theories of diffraction exist,

one is the Vector Theory of Diffraction which is a rigourous theory treating the problem as

a boundary value problem of electromagnetic field scattering. Difficulties in the solution

in this manner usually lead to the simplified treatment of the general problem in terms of

the Scalar Theory of Diffraction, the use of which is made in this thesis. It is important

to note that this theory ignores the vector nature of electromagnetic fields and so neglects

the effects of polarisation which can be significant.
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5.8 Fresnel and Fraunhofer Diffraction

When an object scatters (diffracts) EM waves, we are interested in the scattered image

either close to the object, which allows us to observe how the wave scatters near the

scattering point, or far from the object, essentially at an infinite distance (as compared

to the dimension of the scattering obstacles). The first case is called Fresnel diffraction

and the second is Fraunhofer diffraction. To make this distinction more precise consider

that the object under consideration is illuminated by a EM wave emitted from some point

source S considered to be very far from the object. similarly the point of observation of

the scattered radiation, P is also very distant so that the wave at the points S and P

‘approach being planar over the extent of the diffracting obstacles’, [40]. The dividing line

between Fresnel and Fraunhofer diffraction is given by the phase

kL2

R
<>

π

4
(5.8)

Where Fresnel diffraction is the greater than case and Fraunhofer the less than one, [45],

and k = 2π/λ is the wavenumber of the incident wave, L the maximum dimension of the

scatterer, and R, the distance of the scatterer to the observation point P . A closer analysis

of this condition will be given when required.

5.9 Multiple Scattering and Surface Shadowing

Two effects not often considered in most scattering theories are the phenomena of multiple

scattering and surface self-shadowing. The first of these simply refers to the possibility

that for relatively deep surface cavities radiation can reflect more than once. For small

irregularity heights relative to the wavelength only small distortions are noticed in the

scattered field, [6]. If however, the surface gradients are no longer small, which may hap-

pen if either σ increases or λ0 decreases, [57], the incident radiation may be momentarily

‘trapped’ inside the cavity and thus considerably alter the final scattered field. First, by
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extra absorption at each scattering point, and second, by a further randomisation of the

scattered field. This may also happen when the angles of incidence increase away from

the normal.

Surface self shadowing is caused by the surface itself shading other parts of itself. This

can happen in three ways : either parts of the surface will be in total shadow others will

be illuminated fully or with the inclusion of diffraction effects, regions of semi-shadow can

exist, [57]. Obviously, those parts in shadow will not give rise to a reflected field and

will not contribute to the overall scattered field, [8]. It is known that the scattered field

is drastically altered for large angles of incidence, [8]. It is standard practice to modify

the various theories by the inclusion of a shadowing function based on the assertion of

Brekhovskikh, [17], that the integration over the surface be carried over the entire illumi-

nated surface removing the shadowed parts. This has, to some degree, been successful,

except when dealing with semi-shadowing encountered when σ/λ ∼ 1, in which case it is

very difficult to construct such functions, [57].

These effects are complicated but may be of consequence especially near grazing incidence.

Since we are restricted to mainly normal incidence in industry we will not consider these

two phenomena in this thesis. Generally they may not be ignored however.

5.10 Influence of Scattering Regions

In order to analyse the scattering of EM radiation from rough surfaces we are also inter-

ested in which region of the surface contributes the most to the scattered field at some point

of observation B. An analysis of this problem is carried out by Beckmann & Spizzichino,

[8]. Consider the following diagram, Figure 5.10.1, where a scattering object with mean

plane z = 0 is illuminated by a source located at A(0, 0, h1). The surface generates scat-

tered radiation which arrives at the observation point B(x, 0, h2). Those points whose

contribution produce scattered radiation of constant phase difference δ at B are the ones
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which make the most significant contribution to the scattered field. Following Beckmann

& Spizzichino, [8], this occurs when

δ = R1 + R2 −R (5.9)

is a constant. If now we increase the phase in steps of λ/2 ie

δ =
nλ

2
(5.10)

Figure 5.10.1 Fresnel zones producing radiation of constant phase at the observation

point B(x, 0, h2) [8]

then we produce a series of zones in the (x, y) plane each bounded by an ellipse determined

by (5.9). We find that for each successive zone its contribution is reduced away from the

scattering point. Therefore the region contributing the most to the scattered field at B

are the first few Fresnel zones defined by (5.10) above.

This means that the region of interest in scattering lies within a small distance of the

scattering point (usually the first Fresnel zone, n = 1) and that when considering the
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solution to the scattering problem, which is often carried out by integration of a scattering

integral, only a small range of integration limits are required for an accurate solution. For

example, a scatterer of maximum dimensions, L − (−L), does not require an integration

over the whole domain [−L, L] but simply over the distances [−l, l], l being a fraction of

L determined by the first Fresnel zone (5.10). This simplification aids in the computation

time of the integral without significantly reducing the accuracy of the result. This is an

important point and will be implemented in the solution of the problem at hand later on.

N.B. for cases where only parts of the surface are rough or where the surface does not

enclose the first Fresnel zone the entire domain of integration is required in the solution,

[8].

5.11 The Emissivity of Rough Surfaces - A Review to Date

The problem of this thesis is that of determining the influence of several parameters deemed

to be of importance in the study of the surface emissivity of steel surfaces in industry in

order to accurately measure the temperature of steel. As has already been stated, they are

: the wavelength of EM radiation used in the measurement, the thickness and roughness

of oxide layers on the steel and the influence of temperature on the emissivity. This means

that we must deal with two problems, the first, that of scattering of radiation from rough

unoxidised steel surfaces, and the second, that of rough oxidised steel surfaces. In the first

case we are restricted to testing the influence of roughness, wavelength and temperature,

whereas in the second case we test the influence of roughness, film thickness, wavelength

and temperature. It is important to stress that both problems are worth study since both

may be treated in isolation. For a concrete understanding of surface scattering the first

must be comprehended before the second may be properly understood.

Similarly, for each problem, previous research to date can be categorised into work dealing

with experimental (industrial, empirical results) and theoretical work attempting to ver-

ify, and, most importantly, get a physical ‘feel’ for the problem considered. In most cases
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little direct research exists into the emissivity problem, both experimental and theoretical,

as such most research material looks at the rough surface scattering problem for which a

good deal of experimental work and a vast quantity of theoretical research exists.

As already expounded in the introduction to the first part of this thesis three types of

surface characteristics influence the emissivity of metallic surfaces. We are presently in-

terested in the Topographical characteristics.

It is considered that the most important influence on the emissivity is the surface roughness

and the growth of oxide films on the surface, especially when the surface profile variations

and film thickness are of the same order as the wavelength of measurement radiation, [89].

It is also apparent that film thickness has a greater influence on spectral radiative prop-

erties than does surface roughness of the same dimension [89], this is unexpected since

one would assume surface roughness would overwhelm any film interference effects given

a large enough optical roughness.

In order to clarify the aspects of scattering theory we will qualify the various kinds of

surfaces into two types. Making use of the optical roughness ratio, [68].

• when σ/λ > 1 then the reflective behaviour is determined by geometrical optics

• when σ/λ ¿ 1 the reflective properties are governed by diffraction

In fact, other researchers give an approximate upper limit to the diffraction range as

σ/λ ' 0.15, [89], beyond this limit surface topography must be considered, [65].

5.11.1 Optical Roughness ratios σ/λ > 1

In this case, geometrical optics reigns and each of the rough surface facets act as small

mirrors reflecting light in various directions. When a ray strikes one of the pits of the

surface it may reflect more than once leading to multiple scattering of light. It is obvious

that each time the ray hits the surface it is partially absorbed, and since Kirchhoff’s law

states ε = a, then the surface emissivity of a rough surface must be greater than that of

a smooth one [72]. Occasionally it is possible to solve the problem for surfaces of a given
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profile, for example, the work of Popova, [64], Zipin, [98] and Barrick, [5], produce results

in good agreement with experiment. But generally some statistical description must be

given, [89], for instance Spetner, [76].

5.11.2 Optical Roughness ratios σ/λ ¿ 1

For small optical roughness, multiple reflection effects become negligible and diffraction

effects dominate. Even though the surface would appear optically smooth, diffraction

effects still operate. As such, due to scattering (single scatter), a significant portion of

radiation is scattered away from the specular, thereby reducing the reflectivity and thus

increasing the emissivity.

Note that, no mention of surface absorption is made which would only add to the increase

in emissivity. It should be noted that almost all theoretical research either requires or

uses the assumption of perfect conductivity, that is, zero absorption. This is done for

simplification of the theory and as a means of extracting closed form solutions rather than

just numerical results. All such work must be considered somewhat restricted in nature.

So, generally, we expect an increase in emissivity no matter which theory is used to analyse

the diffraction problem.

N.B. the use of the roughness ratio as a measure of the influence of the roughness of the

surface on the scattering of radiation seems to be the most useful parameter, however it

should be noted that it is only one of many such parameters and is by no means the only

necessary parameter for such a description. For example, Smith & Hering, [74], note that

the optical roughness parameter is inadequate to describe all surface roughness effects and

the additional variable of RMS roughness element slope is needed.

Relatively few experimental investigations exist into the problem of rough steel surface

emissivity. However, Saint-Jacques et al, [70], conducted experiments on etched steel to

study the effect of surface roughness on radiative properties. Their etched surfaces varied

approximately periodically with height up to 1 µm and periods of the order of 0.7 µm. It
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is found that a rough surface behaves partially like a double layer or thin film on top of

a steel substrate. This is supported by other authors who state that a rough surface may

be replaced by an equivalent film with plane-parallel boundaries whose thickness is equal

to σ, the RMS roughness of the surface, and whose optical characteristics can be obtained

from Maxwell Garnett, [50]. It is also found that the emissivity increases with the depth of

surface undulations. Typical graphs of reflectance versus wavelength are shown in Figure

5.11.1 and 5.11.2.

Von Esser, [92], notes that the effect of surface roughness is to increase the emissivity

greatly as compared to the specular case (also, [86]). As noted already, he states that

the effect of roughness and oxide film thickness is far greater than the optical absorption

properties of the steel under consideration. He further states that in some cases the error

introduced in the determination of surface temperatures is so great that no simple correc-

tive procedures are adequate. Birkebak & Eckart, [11], conducted experimental research

into the effects of surface roughness on the reflectivity of metal surfaces, in their case

mainly aluminium surfaces. Their surfaces were roughened by using ground glass as a

substrate and evaporating the metal (aluminium & nickel). Their results support those of

Von Esser and produce graphs akin to those of Saint-Jacques et al, [70]. These are shown

in Figure 5.11.3. These results were confirmed in the research of Smith & Hering, [74],

with similar graphical data, Figure 5.11.4, which also included comparisons to theoretical

models. Good agreement is obtained over a fairly large wavelength range. It is found, as

expected from earlier research, that as wavelength increases the rough surface scattering

characteristics approach that of a smooth surface. Similarly, as roughness height is de-

creased the trend is to reflect specularly. Similar trends were noticed in earlier research,

[10] or [11].

Often the change in surface emissivity is studied as a sample is slowly oxidised over time

at some temperature. Apart from effects generated by oxide film growth, already men-

tioned in chapter 3, it was found that as the sample oxidises at a given temperature and

oxide film thickness increases, so does roughness. Or as Hill et al, [41], puts it ‘ optical



90 CHAPTER 5. ROUGH SURFACES

roughness values show the .. trend of increased (emissivity) values with increased time-

at-temperature for the samples’. Additionally the radiative characteristics of the surface

go from specular to diffuse as the roughness is increased. It is of fundamental importance

that the authors state that some of the samples were too rough for the application of scalar

diffraction theory. Stressing again that maybe some effects of surface roughness depend on

the polarisation changes upon scattering from the surface, [79]. Recent research of Chen,

[20], into hot rolled steel point to similar consequences, such as emissivity increase over

temperature and roughness. Browne, [19], and Chen, [20], also noticed oscillations in the

emissivity at certain wavelengths.

The theoretical analysis of the diffraction problem was studied early on by Rice, [67],

Davies, [24], and further modified by, Bennet & Bennet, [9], they obtained an analytic re-

sult relating the scattering coefficient or relative reflectance ratio to the surface roughness

ratio as follows :
RS

R0
= e−( 4πσ

λ )2

+
32π4

m

(
σ

λ

)4

(∆θ)2 (5.11)

where RS and R0 represent the reflectance, for normal incidence angle, of rough and

smooth surfaces respectively, ∆θ is the half angle of the field of view and m the RMS

slope of the surface undulations. The first term is the coherent component of the scattered

radiation and the second the diffuse component. Specular reflection dominates at long

wavelengths ie σ/λ ∼ 0 (geometrical optics region) since the second term decreases at a

faster rate than the coherent term, [10]. When the optical roughness is of the order of one

(diffraction region) both terms contribute and it is found that a statistical description of

the surface topography is required rather than the simplified treatment of roughness via

σ/λ. Note, that the surfaces in the above representation were at all times considered to

be perfectly conducting, thereby ignoring absorption effects of real materials. Similarly,

the effects of shadowing and multiple scattering were not included. As stated earlier, [72],

some success in comparison with experimental results was had, although some cases of

surface roughness led to poor agreement. The theory also used Gaussian roughness as an

approximate representation of rough surfaces and it is known that some surfaces cannot
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be estimated in this way at all, eg fractal surfaces, [57].

Beckmann & Spizzichino, [8], have extended the consideration of statistical roughness

properties with the use of the correlation length mentioned in section (5.6). Their results

produced a more favourable comparison with experiment reproducing emissivity increase

at small wavelengths and specular scattering characteristic at long wavelengths.

For cases where geometrical optics is dominant, Zipin, [98], studied the optics of V-grooved

surfaces of σ : 0.05-5 µm in the visible region, including the effects of multiple scattering.

He found good agreement with experiment except near grazing incidence, finding the

results independent of groove height. Other authors, [64], used an analogous model which

also included the effects of surface self shadowing which were absent from all of the theories

so far mentioned and concluded that ‘the characteristics obtained were in good agreement

with existing experimental data’. Torrance & Sparrow, [88], confirmed the results of

experimental data, their graphs relating emissivity to angles of incidence at an optical

roughness of 2.6 are shown in Figure 5.11.6.

In industry it should be noted that the effects of surface roughness are often treated in an

ad hoc manner by assuming the emissivity is higher than that of the specular case and

using an approximate value such as ε = 0.8.

Summary

Let us summarise the results of experimental and theoretical research, for unoxidised

surfaces, so far.

(a) Experimental Research

(i) Roughness is known to significantly raise the emissivity of metal surfaces when

compared to a polished or smooth one. The emissivity of rough surfaces is

always higher than the equivalent smooth one.
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(ii) Roughness effects are known to be most important when the they are compa-

rable to the wavelength of the measurement radiation.

(iii) A rough surface behaves like an extra layer of material on top of the substrate.

(iv) A rough surface appears smooth if the wavelength of incident radiation is much

greater than the typical dimensions of the scattering elements. Similarly, even

for relatively small wavelengths, if the roughness height is very small, the surface

has the characteristics of a specularly reflecting one.

(v) Some evidence of emissivity oscillations exist without requiring an oxide layer.

(b) Theoretical Research

Theoretical research is usually restricted to perfectly conducting surfaces ignoring

absorption effects for the sake of simplicity and analytic solubility. This hampers

their usefulness, although results in agreement with experiment can still be found.

(i) Agreement with experiment was confirmed with results (i), (ii) and (iv) above.

(ii) To the authors knowledge no results indicated the presence of emissivity oscil-

lations on unoxidised surfaces. A result that needs to be demonstrated.

(iii) Some theoretical results confirm that a rough surface acts much like an extra

layer of material on top of the metal substrate.

5.11.3 Rough Filmed Surfaces

Steel surfaces are subject to oxidation at high temperatures. This process may alter the

shape of the original steel surface as well as adding one or more layers of iron-oxide.

These layers are themselves rough, usually to a higher degree than the original unoxidised

metal surface. This roughness may be caused by a multitude of factors such as crystal

grain boundaries, cavity formation in the oxide layers, contraction and buckling of Scale

on cooling, spalling of Scale and surface roughness see Stott, [78], and section (1.4.3) for

further information.
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Generally, the layers of oxide possess a resistivity (cf conductivity) higher (lower) than

iron and so act to some degree as dielectrics even though section (1.4.3) demonstrates

their high conductivities at elevated temperatures. This results in them having relatively

high emissivities, [72]. Two factors are working to alter the emissivity both the electrical

properties of the films themselves which tend to increase the emissivity and the rough

surface of the films which has a similar effect. This effect is demonstrated in Figure 5.11.5

and 5.11.7. The increase in emissivity, known to be quite large for the transition from

smooth to rough steel, is not as pronounced in the case of dielectrics. Siegel & Howell, [72],

state that the increase in emissivity for dielectrics is only slight. This behaviour is noticed

for dielectrics and so may be applicable to many oxides. This is certainly the case at low

temperatures, below say 600oC. Above this, the conductivity of the iron-oxides increase

especially that of Fe2O3. Nonetheless, most of the oxides act as semiconducting ceramics.

It has been shown that, [48], semiconductors behave as metals with a high resistivity so

their behaviour is analogous to the metal case already discussed.

There is not a great deal of theoretical work involving both surface roughness and oxide film

thickness. There are however a considerable number analysing the characteristics of rough

surface films in different contexts. One of the earliest attacks on the problem of rough

surface film optical characteristics was carried out by Eastman, [30], who approximated

the film roughness with the use of Beckmann’s theory and then used an Airy summation to

solve for the scattered field. He also used the scattering matrix approach already employed

in section (3.2). He found that the scattering properties of a rough film having identically

shaped boundaries, with regard to the substrate and the ambient medium, is determined

solely by surface roughness of the substrate and the optical properties of the covering film.

For the case of a nonidentical film the spatial separation of the two boundaries determine

the scattering characteristics in the main. His results were confirmed experimentally in

‘most cases’, [30], and any deviations were assumed due to bulk scattering inside the layer.

In a series of articles, Ohlidal et al, [58], [59], [60], investigated the problem with the use of

Beckmann’s formalism in a completely different way to that of Eastman, [30]. He showed
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that a relatively small change in optical thickness of the rough film can markedly alter the

reflectance. The coherent component of the scattered reflectance (rough case) is always

less than than that of the reflectance of the smooth case, and for some wavelength regions

close to zero. For maximum values of the flat surface reflectance the scattered case is

identical. Lutter & Ferencz, [49], using perturbation theory, found that scattering away

from the specular could be increased by increasing the substrate temperature which could

be identified with an increase in surface roughness. Also, the greatest light intensity near

normal incidence was a result not only of volume or rough surface characteristics but also

due to interference from ‘cross-correlation’ of the interfaces. In other words the relation-

ship between the the shapes of the substrate and ambient boundaries. This is supported

by the work of, [31]. In line with previously mentioned results, section (5.11.2), it was

shown by other authors, [81], using a Beckmann method with λ0 À λ, that a rough sur-

face may be considered smooth but optically inhomogeneous having an effective refractive

index depending on a parameter linking both the amplitude and density of the surface

roughness. For other techniques where λ0 ¿ λ see [91] and [14]. Using second order

perturbation theory, Fung, [34], noticed a direct relationship between radiation scattered

in non-specular directions and the Fourier spectra of the boundary surfaces of the layer.

Multiple scattering was noticed even for small roughness as well as wave depolarisation.

Summary

In summary the characteristics of rough oxidised surfaces

(i) Depends only on the optical properties of the film and roughness of the substrate, for

identical film/substrate boundary profiles. Whereas for non-identical boundaries the

roughness of both boundaries plays a part because of cross-correlation.

(ii) As for the flat case we expect a rise in emissivity and possibly oscillations due both

to interference and roughness.
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(iii) The electrical properties of the film are important, more so than for the unlayered

case.

(iv) Wave depolarisation and multiple scattering occur.

5.12 Review of Electromagnetic Scattering Approaches

The solution of the scattering problem above may be achieved with a host of techniques.

They are basically divided into integral methods and differential methods. For a derivation

of the general scattering problem refer Cho, [21].

5.12.1 Differential Methods

In this case we solve the exterior Dirichlet problem directly with the use of Numeri-

cal methods such as finite differences or finite element techniques. Currently, numerical

methods which solve the Dirichlet problem directly are not used to a great extent in rough

surface scattering. Exceptions include the problems dealing with specific shapes such as

sphere, cylinders, flat planes and parabolas all of which can be approached with the use

of special coordinate systems and often special functions. For a detailed study see, [15].

Other approaches are those of Petit, [62], and Maystre, [51], all of which deal with the

scalar diffraction problem for periodic gratings.

5.12.2 Integral Methods

These are used extensively for the solution of most rough surface scattering problems.

The process is usually to reduce the exterior Dirichlet problem above to either an inte-

gral equation problem or an integral representing the problem at hand. Direct solution

methods such as the Galerkin method are possible although substitution of approximate

solutions are common.
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5.12.3 Rayleigh Method

The basic principle of the method is to write the scattered field as a sum of outgoing

plane waves and then determine the unknown coefficients in the sum with the use of the

boundary conditions on the rough surface. For use of the method refer to, [8],[57], [62]

for periodically rough surfaces or [47] for a general periodic surface and, [67] for random

rough surfaces.

5.12.4 Perturbation Theory

Perturbation theory may be invoked when the surface corrugation height function given

by ζ(x, y) is restricted by the following inequalities, k|ζ(x, y)| ¿ 1 and |∇ζ(x, y)| ¿ 1,

in other words the surface undulations at any point are always smaller than the incident

wavelength and its surface gradients are small. For a comparison to other theories such as

the Rayleigh method see, [23]. For a review refer to, Ogilvy, [57], and Thorsos & Jackson,

[85].

5.12.5 Integral Equation Methods

Integral equations (IE) which are equivalent to the original diffraction problem, may be

constructed for electromagnetic theory and then solved subject to certain boundary con-

ditions. For the scattering problem they are defined as the electric field integral equation

(EFIE) and the magnetic field integral equation (MFIE) over the surface, S, of the scat-

terer. There are a great many research articles on the use of either of EFIE or MFIE,

above, for scattering such as, [57], [22] and for solution methods, [69], [62] and for an in

depth analysis of their use, [96]. Most IE methods deal with perfect conductors, [97]. The

solution techniques vary widely from iterative methods (eg, [54]), Galerkin methods (eg,

[69], [36] also known as the method of moments), Quadrature methods (eg, [85]), Green’s

function methods (eg, [28]) and Fourier Transform methods (eg, [18]).
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5.12.6 Variational Methods

It is often possible to replace the problem of integrating a differential equation with the

equivalent one of finding a minimum (maximum, saddle point) of some integral, these

are called variational methods or the construction of a variational principle. The solution

often involves the use of trial fields which are optimised by the stationary principle, or

they are substituted into the integral, which is solved up to first-order errors in the trial

fields, [57].

5.12.7 Other Methods

Various other methods exist to solve both the original exterior Dirichlet problem and

facilitate the construction of some integral or integral equation. The most popular of

which is the Kirchhoff method which is to be discussed in the next chapter. Other methods

relating to the direct solution of the Helmholtz equation include the finite element method

and Monte Carlo methods.

For integral-like techniques there exist Spectral methods these types include the methods

of, [28], the full-wave method, [4], and the stochastic functional method, [56].

5.13 The Purpose of Further Research

We know from the review and the theories above, that further research is required in

the explanation of certain physical results such as oscillations in emissivity for unoxidised

rough surfaces and a more complete understanding of the role of profile parameters such

as average amplitude of corrugations and period of the profile. In addition, virtually all

theories address the problem with the assumption of perfect conductivity an assumption

certainly not representing the real situation.

We also wish to avoid as much as we can the restrictions imposed by other theories such

as small roughness (perturbation theory), convergence problems (Rayleigh theory), long
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correlation lengths (IE methods) and poor accuracy (Variational methods).



Chapter 6

Kirchhoff Theory

6.1 Introduction

The final method dealt with is surely the most popular one in the literature, [57]. The

work of Beckmann & Spizzichino, [8], is refered to more than any other. It is this method

which will be used in this thesis to construct a solution to the scalar scattering problem.

The theory is also known by the terms Physical Optics Theory, Kirchhoff Theory, Tangent

Plane Method and occasionally the Helmholtz Representation. Why is Kirchhoff theory so

well used, the reasons are many, let us first summarise the assumptions (or simplifications)

made in most scattering theories, [8]. :

1. The dimensions of the scattering elements of the rough surface are considered either

much smaller or much greater than the wavelength of the incident radiation.

2. The radius of curvature of the scattering elements is much larger than the wavelength

of the incident radiation.

3. Surface self-shadowing is neglected.

4. The scattered field is assumed to be in the Fraunhofer zone.

5. Multiple scattering effects are mainly ignored.
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6. The theories treat either random rough surfaces or special surfaces, not considering

fractal surfaces or investigating each roughness aspect in depth.

7. The density of scattering elements per unit length of surface are not considered.

8. The scatterer is often assumed to be perfectly conducting.

9. The depolarisation of the electromagnetic field upon scattering is not considered.

10. The incident wave is taken as monochromatic and planar.

The most general Kirchhoff theory developed so far makes the simplifications 2, 4, 5,

8 and 9. Kirchhoff theory is mainly used because it has a relatively limited number of

assumptions, it has a straightforward physical basis, and it allows, in some cases, analytic

solutions to the scattering problem. Most of the previous theories relied on numerical

solutions, the analysis of which is difficult. For example, differentiating the effects of

multiple scattering on the one hand and the surface roughness in a solution is not easily

achieved, when the results, often in graphical form, contain both effects.

This chapter will consider Kirchhoff theory in some detail, its derivation in a rigourous

form and the assumptions and criticisms levelled at it. The first section deals with the

formulation of the scattering integral. The basis of the method including its satisfaction

of the Helmholtz equation and the far-field radiation condition, these making up the

fundamental Dirichlet problem. There is a section dealing with the theory’s existence and

uniqueness which appeals to the physical justification of the theory’s basis.

Finally the full theory comprising the formulation of Beckmann, [8], is presented and

arrives at the scattering integral which forms the basis for all solutions of the scattering

problem both theoretical and numerical. There is also the inclusion of the technique used

to determine the emissivity for a rough rather than a smooth surface. This definition is

not that used previously, [8], but is closely related.



6.2. THE HELMHOLTZ REPRESENTATION 101

6.2 The Helmholtz Representation

6.2.1 The Interior Problem in R3

Before applying the theory directly to the scattering problem let us construct the basis of

the theory itself. We will follow the construction of Cho, [21], in the subsequent analysis.

First, consider the interior problem in a homogeneous medium Di ⊂ R3 which is enclosed

by a smooth surface S. In Di the scalar field φ(r), r ∈ Di is assumed to obey the Helmholtz

equation

∇2φ(r) + k2φ(r) = 0 (6.1)

Similarly, define a Green’s function such that it satisfies the differential equation

∇2G(r, r0) + k2G(r, r0) = −δ(r− r0) (6.2)

where G(r, r0) is called the free space Green’s function depending on the distance r − r0

as follows

G(r, r0) =
eik|r−r0|

4π|r− r0| (6.3)

where δ(r− r0) is the Dirac delta function such that

δ(r− r0) =





1 if r = r0

0 if r 6= r0

(6.4)

Now, postulate a vector defined by

w(r, r0) = G(r, r0)∇0φ(r0)− φ(r0)∇0G(r, r0) (6.5)

Where ∇0 refers to ∇(r0). Taking the divergence of w(r, r0) at r0 we get

∇0.w(r, r0) = φ(r0)δ(r− r0) (6.6)

now, integrate over the region Di using the divergence theorem

∫

Di

∇0.wdV =
∫

S
w.n̂0dS0 (6.7)
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therefore

∫

Di

φ(r0)δ(r− r0)dV =
∫

S
G(r, r0)∇0φ(r0)− φ(r0)∇0G(r, r0).n̂0dS0 (6.8)

where n̂0 is the unit vector normal to S drawn into Di, so

φ(r) =
∫

S
φ(r0)

∂G(r, r0)
∂n0

−G(r, r0)
∂φ(r0)
∂n0

dS0 (6.9)

where ∂/∂n0 ≡ n̂0.∇0. This is of course Green’s second theorem also called the Kirchhoff

integral.

6.2.2 The Exterior Problem in R3

Now construct the exterior problem with the use of the results from (6.2.1). The scalar

scattering problem in an exterior region of free space in which a monochromatic plane

wave EI(r) is incident upon a scatterer with smooth surface S produces a scattered wave

ES(r) in the exterior region De ⊂ R3. The scattered wave, as well as the incident wave,

is assumed to satisfy the scalar Helmholtz equation, ie

∇2EI(r) + k2EI(r) = 0 (6.10)

∇2ES(r) + k2ES(r) = 0 (6.11)

and the scattered field satisfies the Sommerfeld radiation condition

lim
r→∞ r

(
∂ES(r)

∂r
− ikES(r)

)
= 0 (6.12)

To relate this problem to the interior one, enclose the unbounded region De with a spherical

surface As having infinite radius, thus presenting us with an interior problem enclosed by

the surface S of the scatterer and As. Note that the surfaces S and As must both be

closed in order to use the divergence theorem, there must be no ‘holes’ or discontinuities

in S or AS . This implies of course that the given formulation does not strictly apply to
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scatterers having non-continuous surfaces, for these cases see, [29]. Define E(r) as the

total field in De so that

E(r) = EI(r) + ES(r) (6.13)

We then find that the Kirchhoff integral, (6.9), becomes

E(r) =
∫

S∪As

E(r0)
∂G(r, r0)

∂n0
−G(r, r0)

∂E(r0)
∂n0

dS0 (6.14)

This becomes

E(r) =
∫

S
E(r0)

∂G(r, r0)
∂n0

−G(r, r0)
∂E(r0)

∂n0
dS0+

∫

As

E(r0)
∂G(r, r0)

∂n0
−G(r, r0)

∂E(r0)
∂n0

dS0

(6.15)

the second integral can be divided into one for the incident field EI(r) and one for the

scattered field ES(r), that is

II =
∫

As

[
EI(r0)

∂G(r, r0)
∂n0

−G(r, r0)
∂EI(r0)

∂n0

]
dS0 (6.16)

and

IS =
∫

As

[
ES(r0)

∂G(r, r0)
∂n0

−G(r, r0)
∂ES(r0)

∂n0

]
dS0 (6.17)

since the RHS of (6.16) is just an integral representation of the function EI(r) at r ∈ De,

and since the second integral is zero by the radiation condition then

II = EI(r), IS = 0 (6.18)

therefore the final integral solution for the scattered field is

EI(r) + ES(r) = EI(r) +
∫

S
E(r0)

∂G(r, r0)
∂n0

−G(r, r0)
∂E(r0)

∂n0
dS0 (6.19)

or

ES(r) =
∫

S
E(r0)

∂G(r, r0)
∂n0

−G(r, r0)
∂E(r0)

∂n0
dS0 (6.20)

where E(r0) represents the total field at r0 ∈ S of the surface of the scatterer. It is straight-

forward to prove that the above, well known Kirchhoff integral for the scattered field,

satisfies the Helmholtz equation and the radiation condition. Satisfying the Helmholtz
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equation is easily shown, see, [21] and will not be shown here. The radiation condition is

also satisfied. Consider the asymptotic form of (6.12) for kr À 1 or k|r − r0| À 1, first

the Green’s function is expressed in terms of the difference |r− r0| ie

k|r− r0| = k
√

(r− r0).(r− r0) (6.21)

= k
√

r2 − 2r.r0 + r2
0 (6.22)

= k

√√√√r2

{
1− 2

[
(r̂.r0)

r
− 1

2

(
r0

r

)2
]}

(6.23)

expanding the square root as a binomial series we get

k|r− r0| ∼ r − r̂.r0 (6.24)

for the asymptotic Green’s function when r À r0

lim
r→∞G(r, r0) ∼ eikr

r

e−ikr̂.r0

4π
(6.25)

and similarly for ∂G(r, r0)/∂n we get

lim
r→∞

∂G(r, r0)
∂n

∼ −eikr

4π
[ik(r̂.n̂0)]e−ikr̂.r0 (6.26)

since in the Fraunhofer zone r̂.n̂0 ≈ −1 then

lim
r→∞ES(r) ∼ −eikr

4πr

∫

S

[
ikE(r0) +

∂E(r0)
∂n0

]
e−ikr̂.r0dS0 (6.27)

and

lim
r→∞

∂E(r0)
∂n0

∼ −eikr

4πr
ik

∫

S

[
ikE(r0) +

∂E(r0)
∂n0

]
e−ikr̂.r0dS0 (6.28)

finally giving

lim
r→∞ r

(
∂

∂r
− ik

)
ES(r) = 0 (6.29)

which is the Sommerfeld radiation condition. So the above Helmholtz representation

for the scattered electric field is a general solution which satisfies both the Helmholtz

equation, (6.10), and the radiation condition, (6.12). However as Cho, [21], states with

some emphasis there is no assurance that the solution, (6.20), will produce a solution of a

specific scattering problem with prescribed boundary conditions.
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6.2.3 Existence and Uniqueness

The existence and uniqueness of the solution to the exterior scattering problem with Dirich-

let or Neumann conditions has been considered for some time. As regards the existence of

the solution to the general problem no theorems exist presently which prove this to be the

case. However under certain stringent requirements on the boundary conditions existence

may be proved, refer, for example to, [3]. It will be assumed forthwith that existence of

solution is verified on physical grounds, [51].

Uniqueness on the other hand has been proven under much less severe conditions. It was

shown, [66], that for a scattered field in an unbounded, homogeneous medium the Dirchlet

or Neumann problem in an exterior region De ⊂ R3 for the scalar Helmholtz equation,

with the Sommerfeld radiation condition and a complex wavenumber k having Im(k) ≥ 0,

there exists at most one scattered field ES(r) in De. One consequence of the theorem

is that the scattered field (from either the Dirichlet or Neumann problem) decay with

distance from the scatterer (ie r) inversely at most (ie 1/r). Any solution decaying faster

than this is not a scattered field. Once again this brings to light the possibility that the

formulation above will not represent a scattered field. Additionally if the wavenumber k

has components such that Im(k) < 0 then we find that the complex eigenvalues of the

Laplacian, ∇2, give rise to a set of complex poles in the wave number intrinsic to the fea-

tures of the scatterer, [21]. This situation will not be considered here as all wavenumbers

are taken as real.

Let us now state the general assumptions made so far in the formulation of the scattering

problem

• The Helmholtz integral representation features the so-called Huygens vector w(r, r0)

this relies on the validity of Huygens principle on the surface of the scatterer.

• The formulation uses the free-space Green’s function in R3 and the fundamental

solution of the scalar Helmholtz equation which is not directly related to the actual

boundary value problem.
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• The solution is formulated without due regard to any boundary conditions that exist

on the scatterer, it is only a general solution.

Notice that the incident field is defined everywhere ignoring the presence of the scatterer.

It exists on the shadowed side of the scatterer as well as inside it, [21]. Therefore, it is

quite reasonable to state that the Kirchhoff formulation may produce results not directly

representative of the actual scattered field. In fact, this anomaly in the representation relies

very much on the boundary conditions imposed on the problem. Since the formulation

was constructed without reliance on some boundary condition (BC), the BC’s applied in

whatever situation will determine whether the solution represents a ‘real’ scattered field

or not. This reliance on the BC’s will be considered again in section (6.3.1). The above

mentioned worries are mathematical in nature, however, our problem is a physical one.

So, it is important to note that the integral representation, (6.20), and the differential

formulation, (6.10), (eg Leontovich BC) be constructed strictly on physical grounds, not

mathematical ones, unless they have good physical support. This suggestion is supported

by Stamnes, [77], who notes that it is not the choice of the boundary conditions that is

worrisome but whether the result at the end is a reasonable one from a physical point of

view.

6.3 Beckmann’s Theory

6.3.1 Preliminary Problem Construction

The definition of the scattering problem may be set up using the so called tangent plane

approximation, [8]. A plane monochromatic wave travelling in free space (linear, homoge-

neous, isotropic, sourceless) is incident upon a scattering object (also linear, homogeneous,

isotropic, sourceless) having as mean surface the plane z = 0 in an (x, y, z) coordinate sys-

tem with origin O. The scatterer S, is assumed to be ‘rough’ in the sense of possessing a
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surface irregularity (deviating from the mean plane) defined by the function

ζ = ζ(x, y) (6.30)

As usual, the incident field will be denoted by EI and the scattered field by ES . So,

the ‘upper’ medium, above the scatterer, is defined by z > ζ, this being free space with

electrical properties as defined in section (1.4). The scattering medium occupies the lower

region defined by z < ζ and has electrical properties µ, ε, σ.

Figure 6.3.1 Geometric construction for the incident and scattered waves at a rough

surface.

Polarisation Characteristics

At all times the incident field will be considered linearly polarised in either the perpen-

dicular (horizontal) or parallel (vertical) direction with regard to the plane of incidence

which will be arbitrarily defined as the (x, z) plane, that is, the plane defined by (kI , k̂)

where kI is the wave vector of the incident wave. In other words if EI lies in the plane

of incidence, (kI , k̂), its polarisation will be called parallel (‖); also if ES lies in the scat-

tering plane (kS , k̂). Similarly the fields will be called perpendicularly polarised if EI and
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ES are normal to the incidence and scattering plane respectively. If such is the case we

may neglect the polarisation effects by dealing only with each separate polarisation and

so consider only the scalar scattering problem.

The scalar scattering problem for the total field E(r) is then

∇2E(r) + k2E(r) = 0 (6.31)

lim
r→∞ r

(
∂

∂r
− ik

)
ES(r) = 0 (6.32)

plus a Dirichlet or Neumann BC. Note, only one such condition is required for a unique

solution.

The incident field is given by the monochromatic plane wave

EI = ei(kI .r−ωt) (6.33)

with

kI = kI k̂I =
2π

λ
k̂I (6.34)

where λ is the wavelength of the incident radiation, ω the frequency and r the position

vector in the space (x, y, z)

r = x̂i + ŷj + zk̂ (6.35)

as usual, the basis vectors are the unit vectors in Euclidean space. For points on S, r

becomes

r0 = x̂i + ŷj + ζ(x, y)k̂ (6.36)

Note that any electric field may be expanded as a series of plane waves, [77]. This being the

case it explains the use of the plane wave approximation, apart from its obvious simplicity.

In additiony it should be stated that the plane wave is a solution of the scattering problem

provided that it satisfies the dispersion relation

k2 = k2
x + k2

y + k2
z =

(
ω

c

)2

(6.37)

as required by the scalar Helmholtz equation, (6.10).
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Geometric Considerations

As shown in Figure 6.3.1, an EM wave is incident at the global angle of incidence defined

with respect to the z-axis as θI measured anti-clockwise from k̂ to kI . This is a global

rather than local angle of incidence since it is not defined wrt to the rough surface itself,

as such it is always constant and may also be termed the mean plane incidence angle.

Similarly the scattering angle is defined by θS and is measured clockwise from the z-axis

to the scattered field with wave vector kS lying in the (kS , k̂) plane.

Figure 6.3.2 Local Scattering Geometry at the rough surface ζ(x)

It is the angle at which scattering observations are made at some observation point P , see

Figure 6.3.2, it may be termed the observation angle, it is also a constant depending on

which angle you wish to observe from. As above

kS = kSk̂S =
2π

λ
k̂S (6.38)
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so that

|kI | = |kS | = k =
2π

λ
(6.39)

For scattering away from the plane of incidence we define the extra angle φ, all scattering

will be confined to the (x, z) plane so that φ = 0 at all times. This will be shown

presently. The total field E(r) in the presence of a scattering object can be decomposed

into the incident and the scattered field ie

E(r) = EI(r) + ES(r) (6.40)

Then the scattered field ES at an observation point P is given by the Kirchhoff integral

ES(r) =
∫

S
E(r0)

∂G(r, r0)
∂n0

−G(r, r0)
∂E(r0)

∂n0
dS0 (6.41)

Then the scattered field is defined in terms of the total field on the scatterer.

Aside

N.B. it should be stressed that from the above integral relation it would seem that the

values taken by E on the surface of the scatterer S, that is, the BC’s E(r0) and ∂E(r0)/∂n

may be assigned arbitrarily, and, most importantly, independent of one another. In fact it

is possible to express E(r) uniquely in terms of E(r0) alone or ∂E(r0)/∂n alone. Following

Sneddon, [73], if the Green’s function G(r, r0) satisfies the Helmholtz equation

∇2
0G(r, r0) + k2G(r, r0) = 0 (6.42)

is finite, continuous wrt to the all points r and r = r0 in a region V bounded by a closed

surface S except at a singularity at the point r, as r → r0, of the same type as (6.3). Then

it follows that if G1(r, r0) is such a function and that

G1(r, r0) = 0 (6.43)

for all points r0 on S then

ES(r) =
∫

S
E(r0)

∂G1(r, r0)
∂n0

dS0 (6.44)
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Similarly if G2(r, r0) is such a function satisfying the BC

G2(r, r0)
∂n

= 0 for r0 on S (6.45)

then

ES(r) =
∫

S

∂E(r0)
∂n0

G(r, r0)dS0 (6.46)

So, the actual Kirchhoff integral is overdetermined and this means the two conditions E

and ∂E/∂n must be related. Usually only one need be chosen and the other can be derived

from the first.

The Tangent Plane Approximation

We are given the value of G(r, r0), ie (6.3), we also require the values E and ∂E/∂n on

S. The precise nature of these expressions originates from geometrical optics theory, [17],

which states that the field at any point of the surface S is the field that would be present

on the tangent plane at that point, [8]. The validity of these BC’s will be discussed under

the section entitled ’The Tangent Plane Criterion’ to be found in the appendix. This

approximation can obviously be considered accurate if the surface undulations possess a

large radius of curvature, rc, compared to the wavelength λ of incident radiation, since

then the tangent plane is a good approximation to the surface at that particular point,

[17]. This can be stated mathematically, [8], as

4πrc cosϑ À λ (6.47)

If however, the surface contains any sharp points or edges this construction breaks down

and the theory will be more inaccurate as this problem is exacerbated. In fact, the theory

is exact only for surfaces that are infinite smooth and planar, [57]. (Note surfaces with

discontinuities are also discounted from the earlier formulation of the Kirchhoff integral,

section (6.2.1)).

Then the reflection coefficient at any point where the tangent plane approximation is valid
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will be the coefficient of a smooth plane at that point. This of course varies as the surface

changes, since the reflection coefficient must a function of the local angle of incidence, ϑ,

on the surface. Therefore, the scattered field on S can be represented by

ES(r0) = R(r0)EI(r0) (6.48)

so the total field becomes

E(r0) = EI(r0) + ES(r0) (6.49)

E(r0) = [1 + R(r0)]EI(r0) (6.50)

then the other condition on S, ∂E/∂n0 will be determined by

∂E(r0)
∂n0

=
∂EI(r0)

∂n0
+

∂ES(r0)
∂n0

(6.51)

it is straightforward to determine the first term in (6.51)

∂EI(r0)
∂n0

= i[n̂0.kI ]EI(r0) (6.52)

now Brekhovskikh, [17], assumes that n̂0.kS = −n̂0.kI therefore the second term in (6.51)

becomes
∂ES(r0)

∂n0
= −i[n̂0.kI ]ES(r0) (6.53)

= −i[n̂0.kI ]R(r0)EI(r0) (6.54)

finally we get
∂E(r0)

∂n0
= i[(1−R(r0)](n̂0.kI)EI(r0) (6.55)

An alternative derivation is possible via Maxwell’s equations, [8].

Fresnel Reflection Coefficients

As can be seen in Figure 6.3.2 the Reflection coefficients for both parallel and perpendicular

polarisation depend on the local angle of incidence thereby they are also dependent on the
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surface slopes at every point r0. They are determined by the usual Fresnel, plane surface

reflection, coefficients, as

R‖(r0) =
N2 cosϑ− cos θt

N2 cosϑ + cos θt
(6.56)

R⊥(r0) =
cosϑ−N2 cos θt

cosϑ + N2 cos θt
(6.57)

since the refractive index of air is assumed, N1 = 1, then the refractive index of the metal

is given by N2. The angle of refraction is given by Snells law as

sin θt =
1

N2
sinϑ (6.58)

so

cos θt =
1

N2

√
N2

2 − sin2 ϑ (6.59)

then the reflection coefficients become

R‖(r0) =
N2

2 cosϑ−
√

N2
2 − sin2 ϑ

N2
2 cosϑ +

√
N2

2 − sin2 ϑ
(6.60)

R⊥(r0) =
cosϑ−

√
N2

2 − sin2 ϑ

cosϑ +
√

N2
2 − sin2 ϑ

(6.61)

from Fig 6.3.2 it is also possible to see that the local angle of incidence is given by

ϑ = θI − β (6.62)

where of course β is given by

β = tan−1
(

dζ(x)
dx

)
(6.63)

where we will be assuming the surface to be rough in only one dimension, ie

∂ζ

∂y
= 0 (6.64)

if this is the case, it may be shown, [51], that the scattered field will be confined to

the (x, z) plane only, implying that the extra scattering angle, φ = 0, at all times for

one-dimensionally rough surfaces. Making use of (6.62) and (6.63), above, we find

cosϑ = cos(θI − β) = cos θI cosβ + sin θI sinβ (6.65)
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sinϑ = sin(θI − β) = sin θI cosβ − cos θI sinβ (6.66)

we have that

tanβ = ζ ′ (6.67)

(” ’ ” refers to differentiation wrt x). Then from simple trigonometric identities we find

cosβ = (1 + tan2 β)−1 =
1√

1 + ζ ′2
(6.68)

sinβ =
√

1− cos2 β =
ζ ′√

1 + ζ ′2
(6.69)

upon substitution into (6.65) and (6.66) we get

cosϑ =
cos θI + ζ ′ sin θI√

1 + ζ ′2
(6.70)

sinϑ =
ζ ′ cos θI − sin θI√

1 + ζ ′2
(6.71)

finally substituting these results into (6.60) and (6.61) for the reflection coefficients we

find

R‖(r0) =
N2

2 (cos θI + ζ ′2 sin θI)−
√

(N2
2 − cos2 θI)ζ ′2 + sin 2θIζ ′ + (N2

2 − sin2 θI)

N2
2 (cos θI + ζ ′2 sin θI) +

√
(N2

2 − cos2 θI)ζ ′2 + sin 2θIζ ′ + (N2
2 − sin2 θI)

(6.72)

R⊥(r0) =
cos θI + ζ ′2 sin θI −

√
(N2

2 − cos2 θI)ζ ′2 + sin 2θIζ ′ + (N2
2 − sin2 θI)

cos θI + ζ ′2 sin θI +
√

(N2
2 − cos2 θI)ζ ′2 + sin 2θIζ ′ + (N2

2 − sin2 θI)
(6.73)

for the two special cases ζ ′ = 0 (flat plane) and θI = 0 (normal incidence) we find

R
‖
0(r0) =

N2
2 cos θI −

√
N2

2 − sin2 θI

N2
2 cos θI +

√
N2

2 − sin2 θI

(6.74)

R⊥
0 (r0) =

cos θI −
√

N2
2 − sin2 θI

cos θI +
√

N2
2 − sin2 θI

(6.75)

for ζ ′ = 0, the 0 subscript indicating the flat case, and

R‖(r0) =
N2

2 −
√

(N2
2 − 1)ζ ′2 + N2

2

N2
2 +

√
(N2

2 − 1)ζ ′2 + N2
2

(6.76)
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R⊥(r0) =
1−

√
(N2

2 − 1)ζ ′2 + N2
2

1 +
√

(N2
2 − 1)ζ ′2 + N2

2

(6.77)

for θI = 0.

6.4 The Scattering Integral

The scattering integral (6.20) may now be evaluated using the above constructions. Con-

sider the scattered field to be evaluated in the Fraunhofer zone so that we make the

approximation r À r0, kr À 1. The Green’s function (6.3) and its derivative, become

G(r, r0) ∼ ei(kr−kS .r0)

4π(r − r̂.r0)
(6.78)

∂G(r, r0)
∂n0

∼ −ieikr

4πr
(n̂0.kS)e−ikS .r0 (6.79)

substituting the various terms (6.50), (6.55), (6.3) and (6.79) into the Kirchhoff integral

(6.20) we get

ES(r) =
ieikr

4πr

∫

S0

[(R(r0)k− − k+).n̂0]eik−.r0dS0 (6.80)

using the notation, [57]

k− = kI − kS (6.81)

k+ = kI + kS (6.82)

Note, that the far field approximation above must equally be true for the dimensions of

the scattering object itself, referring to section (5.8) we see this is true when, [6]

L

r
¿ 1,

kL2

r
¿ 1 (6.83)

Mean Plane Integration

As is correctly pointed out by Ogilvy, [57], it is possible to integrate over the surface

S0, as above, by projecting a differential area element dS0 onto the mean plane (x-axis)
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producing a mean plane area element dSM , see Figure 6.4.1. If this is permitted by the

surface and the size of the area element then we find

dS0 =
dx0

|n0.k̂|
=

√
1 +

(
dζ(x0)
dx0

)2

dx0 (6.84)

If n0.k̂ = 0 at any point then the integral is not well defined. We have

n0.k̂ =
1√

1 + (ζ ′(x))2
(6.85)

since

n0 =
−ζ ′(x0)̂i + k̂√
1 + (ζ ′(x0))2

(6.86)

so

n0dS0 =
(
−ζ ′(x0)̂i + k̂

)
dx0 (6.87)

Figure 6.4.1 The projection of an area element dS0 onto the mean plane dSM provided

the area element dS0 is small enough, [57].

The integration is always performed over small planar elements which are parallel to the

local surface tangent. It is vital that these planar elements be made as small as possible

in order to increase the accuracy of the solution. Therefore, the solution (6.80) is accurate

provided the surface has no infinite gradients and one takes a small step size dx0 along

the mean plane.
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6.4.1 The Kirchhoff Solution in the Fraunhofer Zone

Figure 6.3.1 shows that the incident and reflected wave vectors are given by

kI = k(sin θI î− cos θI k̂) (6.88)

kS = k(sin θS î + cos θSk̂) (6.89)

then

k− = k[(sin θI − sin θS )̂i− (cos θI + cos θS)k̂] (6.90)

k+ = k[(sin θI + sin θS )̂i− (cos θI − cos θS)k̂] (6.91)

k−.r0 = k[(sin θI − sin θS)x0 − (cos θI + cos θS)ζ(x0)] (6.92)

k−.n0 = −k[(sin θI − sin θS)ζ ′ + (cos θI + cos θS)] (6.93)

k+.n0 = −k[(sin θI + sin θS)ζ ′ + (cos θI − cos θS)] (6.94)

substitute these terms into the integral

ES(r) =
ieikr

4πr

∫

SMP

(aζ ′ − b)ei(k−x x0+k−z ζ(x0))dSMP (6.95)

where

a = (sin θI + sin θS) + (sin θS − sin θI)R (6.96)

b = (cos θS − cos θI) + (cos θI + cos θS)R (6.97)

which are constant only when R is independent of position ie when ζ ′ = constant.

For a finite surface defined over the interval −L ≤ x ≤ L we get

ES(r) =
ieikr

4πr

∫ L

−L
(aζ ′ − b)ei(k−x x0+k−z ζ(x0))dx0 (6.98)

Let us now generate the solution specific to a flat surface, ζ = ζ ′ = 0, when all the energy

is in the specular direction (θS = θI). This implies k−x = 0, b = 2 cos θIR

ESF (r) =
ibeikr

4πr

∫ L

−L
−2 cos θIR0dx0 (6.99)
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=
−2 cos θIR0ibe

ikr

4πr

∫ L

−L
dx0 (6.100)

= − ibeikrLR0 cos θI

πr
(6.101)

(the SF subscript standing for a field scattered (S) from a flat surface (F )). This is the field

reflected in the specular direction by a flat, finitely conducting surface (∂R0/∂σc 6= 0), of

the same dimensions, at the same distance as the rough surface. We may then normalise

the general scattered field, (6.98)

ρS =
ES

ESF
(6.102)

where ρS is the scattering coefficient of the rough surface

ρS = − 1
4LR0 cos θI

∫ L

−L
(aζ ′ − b)ei(k−x x0+k−z ζ(x0))dx0 (6.103)

Notice the dependence on the flat surface reflection coefficient. The scattering coefficient

must, as is the case for the reflection coefficient, lie in the interval, |ρS | ≤ 1, where

the modulus refers to complex modulus since ρS is complex due to the presence of a

complex refractive index n. The medium, be it a metal or an iron-oxide, will be lossy

due to the conductivity with the real and imaginary parts given by (2.19) and (2.20)

of section (2.4.2). It is also complex because of the second term in the integral eik−.r0 =

cos(k−.r0)+i sin(k−.r0), although it will be possible to eliminate this aspect of complexity

later on.

6.4.2 The Determination of Rough Surface Emissivity

As has already been demonstrated in section (1.2.4) the emissivity will be obtained by

use of equation (1.9), where the reflectvity is calculated from the reflection coefficients

obtained from the scattering problem. The solution to the scattering problem will be in

the form of the scattered electric field ES . The reflection coefficient will be defined in

terms of the amplitudes of the incident, EI , and scattered (reflected) fields, ES :

R =
ES

EI
(6.104)
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Defining the field ESF as the field scattered by a perfectly smooth surface, ζ = 0, under

the same conditions as the field ES . The reflection coefficient becomes :

R =
ES

ESF

ESF

EI
(6.105)

or

RS = ρSR0 (6.106)

where R0 = ESF /EI is the smooth surface reflection coefficient and ρS = ES/ESF the

scattering coefficient. This merely states that the reflection coefficient for rough surface,

RS , is just the smooth surface coefficient weighted with respect to a function ρS .

Notice that the value of RS is now determined by the scattering coefficient only since

RS = ρSR0 = − 1
4L cos θI

∫ L

−L
(aζ ′ − b)ei(k−x x0+k−z ζ(x0))dx0 (6.107)

where the coefficient R0 is cancelled out, R dependence is however still included through

the coefficients a and b.
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Chapter 7

Unoxidised Rough Steel Surfaces

7.1 Introduction

This chapter comprises one of two chapters reserved for the authors contribution to re-

search in periodic and non-periodic rough surface scattering. First let us mention previous

research in this field.

7.1.1 Non-Periodic Surfaces

Our approach is based on that of Beckmann, [8], and so previous work will consider mainly

his contributions as most others either use his results or extend the basis of validity of

his theory. The research of does not deal with analytic solutions to the complete integral,

instead, he makes certain simplifications in order to allow closed form solutions to be

possible. He assumes either that the surface is smooth, ζ = 0, is perfectly conducting, or

has a specific profile.

1. For the smooth case he obtains an analytic solution and can explain certain scattering

characteristics, such as, scattering only in the specular direction.

2. He also analyses the problem of perfect conductvity, that is, when metals are assumed

perfect conductors. This removes the extra complication of the reflection coefficient

121
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terms inside the integral which depend on surface profile gradients. The amplitude

of the scattered wave is then constant and determined only by the angles θI , θS .

This is not a realistic assumption since absorption characteristics are not considered

nor the effect of position dependent reflection coefficients. Are their contributions

significant ?

3. He also makes the wide ranging conclusion that the solution of the integral at its

edges, when x = ±L, is not of a significant contribution in scattering. Since these

terms are results of edge diffraction which is certainly not irrelevant from a heuristic

point of view, they must be considered. In fact Ogilvy, [57], states categorically that

their inclusion is vital for the determination of the correct solution to scattering

problems, such as the smooth case.

7.1.2 Periodic Surfaces

1. Beckmann also analyses surfaces possessing a periodic profile, ζ(x + T ) = ζ(x).

Two types may be considered, one : where the integral is made periodic by use

of grating theory and, two : where the general non-periodic integral is considered

giving rise to a generalised grating equation. Since Beckmann erroneously assumed

the edge effects may be ignored, he did not consider their contribution. This must

lead to incorrect results. Nevertheless, the original theory, which is based again

on perfect conductivity produces Bessel function solutions. A solution which is

physically acceptable on the grounds that many diffraction problems have similar

solutions, [13].

2. He finds for periodic integrals obeying the grating equation that if

• λ/T ¿ 1 then the incident wave is scattered widely breaking up into many

scattered waves, giving rise to many different directions of scatter.

• λ/T À 1 then the scattering will be specular in nature and any wave will be

specularly reflected regardless of the amplitude, A, of the surface. These results
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agree well with experimental facts, especially the second of these, this result is

also to be expected on grounds of common sense.

3. He does make certain assumptions in order to arrive at these results, such as forcing

his surface to be an even function with perfect conductivity. His research is extended

to scattering integrals not necessarily periodic, giving rise to a generalised grating

equation with the addition of a sinusoidal expression in the amplitude representing

the non-integer aspects of the generalised grating equation; compare this with the

periodic integral case whose amplitude is only related to the angles θI , θS .

4. He briefly extends his periodic analysis both to rectangular and sawtooth profiles.

The interested reader is referred to [8] and, [27]. These types of surfaces will not be

considered here. He also barely mentions sinusoidal periodic profiles with more than

one scale of roughness by adding an extra harmonic to the original profile. This

interesting research is no doubt important in investigating the effect these extra

scales of roughness have on scattering, surely a topic for further research.

Lastly, he discusses what happens if finite conductivity is used rather than perfect con-

ductivity. His conclusion is that finite conductivity can only ever effect the scattering

behaviour if the local reflection coefficients R(ϑ) (ϑ the local angle of incidence), are

determined by the local angle of incidence rather than by the electrical properties of the

scattering material. He states that the scattering characteristics are essentially determined

only by the roughness and not the electrical properties.

Beckmann also only ever investigates surfaces of finite extent not considering any surface

that may be considered infinite in certain circumstances. In this case and only this case

the edge effects are non-existent since there is of course no edge to the surface.

There are then, several avenues left open for consideration in this work. These have been

expanded upon in this chapter. The following research has not previously been carried

out and is a new contribution to both analytic scattering theory and the investigation of

rough surface emissivity.
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1. Surfaces of infinite extent are considered, it is found the extension to infinite surfaces

is a straightforward process using the finite surface results.

2. Finite conductivity is considered by the inclusion in the scattering integral of the

reflection coefficients varying both with local surface gradients and electrical prop-

erties.

3. The edge terms neglected by Beckmann are comprehensively included in the analysis.

4. Instead of only considering surfaces whose dimensions are integer multiples of the

period we extend the analysis to deal with irregular surfaces.

5. Each surface profile is analysed either as an even or odd function of dimension, not

a restriction to one type.

6. The consequences of the above extensions to rough surface emissivity calculations

are considered as well as the conclusions drawn in previous work on rough scattering.

Generally, the rough steel surface will be characterised by the reflection coefficient and the

surface roughness expressed by the function ζ(x). We should note that the final scattering

coefficient will depend on several parameters. These are : the electrical properties of the

scatterer, its angles of incidence and reflection, the wavelength of the incident radiation

and the temperature of the steel surface. From (6.103) we see that

ρS = ρS(θI , θS ; σc, µ, ε, λ; σ, λ0) (7.1)

where the temperature dependence enters through the conductivity σc = σc(T ). Are there

any simplifications possible over this range of variables ? As in section (3.2) we will only

consider dependence on T , λ, θI , θS and the roughness factors σ (RMS surface height) and

λ0 (correlation length). This is true since we will assume the other electrical properties to

be those of free space a not unreasonable assumption, except in special circumstances, ie

µ = µ0, ε = ε0. When considering the emissivity we will be most interested in the normal

incidence case since this is the preferred measurement made in industry. Similarly the
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scattering angle θS will be most often confined to the specular case since this is the region

of interest when comparing the smooth and the rough case. So eventually we will assess

ρS = ρS(λ, T, σ, λ0) (7.2)

7.2 The Extension to Infinite Surfaces

If we wish to extend the scattering integral to surfaces having dimensions L →∞ then we

must consider the limit defined by

− lim
L→∞

{
1

4LR0 cos θI

∫ L

−L
(aζ ′ − b)ei(k−x x0+k−z ζ(x0))dx0

}
(7.3)

It is possible to do a simple analysis of this limit. With the inclusion of the infinite limit

it may be possible for the integral to become unbounded. Now, if it stays finite and

is a function of L then the integral must be computed by some method, analytical or

numerical, and the limit applied. If however the limit of the integral is infinite, then, we

are presented with the situation

lim
L→∞

I(L) = ∞ (7.4)

where

I(L) =
∫ L

−L
(aζ ′ − b)ei(k−x x0+k−z ζ(x0))dx0 (7.5)

the limit may be written

lim
L→∞

ρS =
−1

4R0 cos θI
lim

L→∞
I(L)

L
(7.6)

since we are given that

lim
L→∞

I(L) = ∞ (7.7)

and

lim
L→∞

L = ∞ (7.8)

and both I(L) and L are analytic in (−∞,∞) we may use L’Hospital’s rule to get

lim
L→∞

I(L)
L

= lim
L→∞

I ′(L)
L′

(7.9)
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where ” ′ ” refers to differentiation wrt L

= lim
L→∞

dI(L)
dL

(7.10)

now
dI(L)

dL
=

d

dL

∫ L

−L
(aζ ′ − b)ei(k−x x0+k−z ζ(x0))dx0 (7.11)

change variable X = x + L then we get

d

dL

∫ 2L

0
[a(X − L)ζ ′(X − L)− b(X − L)]ei[k−x (X−L)+k−z ζ(X−L)]dX (7.12)

2
d

d(2L)

∫ 2L

0
[a(X − L)ζ ′(X − L)− b(X − L)]ei[k−x (X−L)+k−z ζ(X−L)]dX (7.13)

then by the Fundamental Theorem of Calculus this can be evaluated as

2[a(L)ζ ′(L)− b(L)]ei[k−x L+k−z ζ(L)] (7.14)

so the limit becomes

lim
L→∞

dI(L)
dL

= lim
L→∞

2[a(L)ζ ′(L)− b(L)]ei[k−x L+k−z ζ(L)] (7.15)

So the general result is

lim
L→∞

ρS =
−1

4R0 cos θI





limL→∞ 1
L

∫ L
−L(aζ ′ − b)ei(k−x x0+k−z ζ(x0))dx0 if limL→∞ I(L) finite

limL→∞ 2[a(L)ζ ′(L)− b(L)]ei[k−x L+k−z ζ(L)] if limL→∞ I(L) infinite
(7.16)

Each theoretical result, could, if necessary, be extended in this fashion. We will find in

the last section that this leads to a simple conclusion.

7.3 Non-Periodically Rough Surfaces

Our region of investigation will be an analysis of rough surface scattering when the surface

is periodically rough, the simplest possible case of a rough surface. It also allows us to

analyse in some detail the effects of the roughness parameters σ and λ0. As a comparison,

surfaces which are not periodic will also be briefly investigated.
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7.3.1 Smooth Surface ζ ′ = 0

It is instructive to examine the case when the surface is that of a flat plane ζ = ζ ′ = 0

then the scattering coefficient, (6.103), becomes

ρS = − 1
4LR0 cos θI

∫ L

−L
−beik−x x0dx0 (7.17)

since R0 is no longer a function of x0

=
(cos θS − cos θI) + (cos θI + cos θS)R0

4LR0 cos θI

∫ L

−L
eik−x x0dx0 (7.18)

=
(cos θS − cos θI) + (cos θI + cos θS)R0

4LR0 cos θIik
−
x

(eik−x L − e−ik−x L) (7.19)

then since sin k−x L = eik−x L−e−ik−x L

2i

=
(cos θS − cos θI) + (cos θI + cos θS)R0

2R0 cos θI

(
sin k−x L

k−x L

)
(7.20)

for specular reflection θS = θI , and using the fact that k−x = k(sin θI − sin θS), it reduces

to the simple expression (applying the limit k−x → 0)

lim
k−x →0

ρSspec = lim
k−x →0

sin k−x L

k−x L
(7.21)

ρSspec = 1 (7.22)

indicating all the energy is directed into the specular direction and none in any other as

would be expected for the smooth surface case. Note, this does not depend on R0. The

actual reflection coefficient for a rough surface is calculated via (6.106), section (6.4.2), as

RS = ρSR0 (7.23)

so we get

RSspec = ρSspecR0 = R0 (7.24)

as expected. Other specific cases is that of perfect conductivity, ie σc, n → ∞, giving

R‖ = 1, R⊥ = −1 and a scattering coefficient of

ρ
‖
Smetallic

=
(

cos θS

cos θI

)
sin k−x L

k−x L
(7.25)
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ρ⊥Smetallic
=

sin k−x L

k−x L
(7.26)

once again the energy is concentrated into the specular direction only for both cases of

polarisation. This is the solution for a highly conducting metal, in fact any material

having a high conductivity would be expected to behave in the above manner. It is a

simple matter to calculate the rough surface reflection coefficient as

RSmetallic
= ρSmetallic

R0 (7.27)

R
‖
Smetallic

=
(

cos θS

cos θI

)
sin k−x L

k−x L
R
‖
0 (7.28)

R⊥
Smetallic

= −sin k−x L

k−x L
R⊥

0 (7.29)

so the reflectivity becomes

Ry =
R
‖
Smetallic

R
‖∗
Smetallic

+ R⊥
Smetallic

R⊥∗
Smetallic

2
(7.30)

For the specular case we find

Ry0 =
R
‖
0R

‖∗
0 + R⊥

0 R⊥∗
0

2
(7.31)

giving

ε = 1−Ry0 (7.32)

as for the smooth case. This then confirms the previous analysis of section (3.2) for the

flat case.

7.3.2 Non-Periodic, Perfectly Conducting Surface

This case has already been studied, [8], with the assumption of perfect conductivity,

R‖,⊥ = ±1 then the values a and b are constants. Taking them out of the integral we get

ρS =
±1

4L cos θI

{
a

∫ L

−L
ζ ′eik−z ζeik−x x0dx0 − b

∫ L

−L
eik−.r0dx0

}
(7.33)
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replacing R0 = ±1, integrating the first term by parts

±1
4L cos θI





aeik−.r0

ik−z

∣∣∣∣∣
L

−L

− ak−x
k−z

∫ L

−L
eik−.r0dx0 − b

∫ L

−L
eik−.r0dx0



 (7.34)

=
∓1

4L cos θI





(
ak−x
k−z

+ b

) ∫ L

−L
eik−.r0dx0 − aeik−.r0

ik−z

∣∣∣∣∣
L

−L



 (7.35)

so

ρS =
∓1

4L cos θI

(
ak−x
k−z

+ b

) ∫ L

−L
eik−.r0dx0 + E(L) (7.36)

where E(L) is the edge term

E(L) =
±1

4L cos θI

aeik−.r0

ik−z

∣∣∣∣∣
L

−L

(7.37)

this is the edge term since it is the evaluation of the wave eik−.r0 at the endpoints of the

rough surface ie

E(L) =
±1

4L cos θI

(
a

ik−z

) [
ei(k−x L+k−z ζ(L)) − ei(−k−x L+k−z ζ(−L))

]
(7.38)

note that if the endpoints are fixed such that ζ(L) = ζ(−L) = 0 then we find

E(L) =
±1

4L cos θI

(
a

ik−z

) [
eik−x L − e−ik−x L

]
(7.39)

=
∓a sin(k−x L)
2Lk−z cos θI

(7.40)

If for example we let ζ = 0 then we get for the scattering solution

ρS =
∓1

4L cos θI

(
ak−x
k−z

+ b

) ∫ L

−L
eik−x x0dx0 +

±1
2L cos θI

a sin k−x L

k−z
(7.41)

the integral is easily evaluated giving

=
∓1

2L cos θI

(
ak−x
k−z

+ b

)
sin k−x L

k−x
± 1

2L cos θI

a sin k−x L

k−z
(7.42)

=
∓ sin k−x L

2L cos θI

[(
ak−x
k−z

+ b

)
1

k−x
− a

k−z

]
(7.43)
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cancelling leaves us with

ρS =
∓b

2 cos θI

(
sin k−x L

k−x L

)
(7.44)

then we find as in the flat case

ρS =





sin k−x L

k−x L
for perpendicular polarisation and θS = θI(

cos θS
cos θI

)
sin k−x L

k−x L
for parallel polarisation and θS = θI





(7.45)

Confirming the result in section (7.3.1) above.

Even and Odd Functions

If ζ is even ζ(−x) = ζ(x) then the the integral and edge terms each become

∓i

2L cos θI

(
ak−x
k−z

+ b

) ∫ L

0
eik−z ζ(x0) sin k−x Ldx0 + E(L) (7.46)

and

E(L) =
±1

2L cos θI

(
a

k−z

)
eik−z ζ(L)) sin(k−x L) (7.47)

then for ζ(L) = 0

E(L) =

(
±a sin(k−x L)
2Lk−z cos θI

)
(7.48)

If ζ is odd ζ(−x) = −ζ(x) we get

∓i

2L cos θI

(
ak−x
k−z

+ b

) ∫ L

0
sin(k−x L + k−z ζ(x0))dx0 + E(L) (7.49)

where

E(L) =
±1

2L cos θI

(
a

k−z

)
sin(k−x L + k−z ζ(L)) (7.50)

and for ζ(L) = 0

E(L) =

(
±a sin(k−x L)
2Lk−z cos θI

)
(7.51)

as for (7.48) above
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N.B. It is obvious from (7.48) that we cannot at any stage ignore the endpoint contributions

since it is they that add the correct factor in order to produce the smooth case scattering

solution (7.45) above.

Also, in the extension to infinite surfaces applying the limit as L → ∞ guarantees the

elimination of the edge effects ie

lim
L→∞

±1
4L cos θI

(
a

ik−z

) [
eik−x L − e−ik−x L

]
= 0 (7.52)

7.4 Rough Periodic Functions

The surface S will be assumed rough in the following manner

ζ(x) = ζ(x + T ) (7.53)

that is, the surface is periodic with period T . Notice also that the same applies for an

integer multiple of the period. That is (refer to appendix for justification)

ζ(x + nT ) = ζ(x) (7.54)

similarly for the derivative of a periodic function we find

ζ ′(x + T ) = ζ ′(x) (7.55)

the same is true for the integer multiple case. In fact generally

ζ(m)(x + nT ) = ζ(m)(x) (7.56)

These results will shortly be required.

7.5 Simplifications of the Kirchhoff Integral

The integral (6.103) is difficult to solve except for the simple case ζ = 0, however other

simplifications are possible. Using the fact that the surface is periodically rough as de-

fined above, then there are several possible simplifications to the solution of the scattering
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integral.

7.5.1 Periodicity of ζ(x)

The original scattering integral is given by

ρS = − 1
4LR0 cos θI

∫ L

−L
(aζ ′ − b)ei(k−x x0+k−z ζ(x0))dx0 (7.57)

we will assume that the dimensions of the scatterer, L, may be made up of an integer

multiple of periods of the surface, nT , and a small fractional addition, ηT , ie

L

T
= n + η (7.58)

or

L = nT + ηT (7.59)

where n is an integer and 0 ≤ η < 1. Then the integral becomes

ρS = − 1
4LR0 cos θI

∫ nT+ηT

−(nT+ηT )
(aζ ′ − b)ei(k−x x0+k−z ζ(x0))dx0 (7.60)

= − 1
4LR0 cos θI

{∫ nT

−nT
(aζ ′ − b)eik−.r0dx0 +

∫ nT+ηT

nT
(aζ ′ − b)eik−.r0dx0+

∫ −nT

−(nT+ηT )
(aζ ′ − b)eik−.r0dx0

}
(7.61)

7.5.2 Main Integral (non-edge terms)

Dividing the length nT into strips so that each strip extends from x0 = jT to x0 = (j+1)T

where j is an integer with −n ≤ j ≤ n− 1 then we get for the first integral

= − 1
4LR0 cos θI

n−1∑

j=−n

∫ (j+1)T

−jT
(aζ ′ − b)ei(k−x x0+k−z ζ(x0))dx0 (7.62)

changing variable such that x0 = X0 + jT , dx0 = dX0

= − 1
4LR0 cos θI

n−1∑

j=−n

eik−x jT
∫ T

0

(
aζ ′(X0 + jT )− b

)
ei(k−x X0+k−z ζ(X0+jT ))dX0 (7.63)
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similarly the reflection coefficients involved in the a and b terms become

R(ζ ′(X0 + jT )) = R(ζ ′(X0)) (7.64)

by periodicity (j an integer), we get

= − 1
4LR0 cos θI

n−1∑

j=−n

eik−x jT
∫ T

0
(aζ ′ − b)ei(k−x X0+k−z ζ(X0))dX0 (7.65)

we will rename the dummy variable back to X0 → x0 again, now let

k−x T = 2πp (7.66)

where p is some real number, then we have

p =
T

λ
(sin θI − sin θS) (7.67)

or

sin θS = sin θI − pλ

T
(7.68)

which is the grating equation if p is an integer, generally it is the generalised grating

equation having real modes. The integral becomes

− 1
4(n + η)R0 cos θI

n−1∑

j=−n

eik−x jT .
1
T

∫ T

0
(aζ ′ − b)ei(k−x x0+k−z ζ)dx0 (7.69)

the sum in front of the integral may be calculated, provided it is finite, as

W =
1
2n

n−1∑

j=−n

e2iπpj , |W | ≤ 1 (7.70)

we get

W =
sin 2npπ

2n sin pπ
e−ipπ (7.71)

(If p is an integer W = 1 as required, [8]). Then the first integral becomes

ρS = − Wn

2(n + η)R0 cos θI

1
T

∫ T

0
(aζ ′ − b)eik−.r0dx0 (7.72)
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7.5.3 Edge Terms

The second set of integrals have two parts to them both of which are tractable upon change

of variable x0 → x0 ± nT . The limits become x0 : 0 → nT and −nT → 0. The first of the

two can then be written

∫ ηT

0
(aζ ′(x0 − nT )− b)ei(k−x (x0−nT )+k−z ζ(x0−nT ))dx0 (7.73)

with periodicity ζ(x0 ± nT ) = ζ(x0), ζ ′(x0 ± nT ) = ζ ′(x0) we get

∫ nT+ηT

nT
(aζ ′ − b)eik−.r0dx0 = e−ik−x nT

∫ ηT

0
(aζ ′ − b)eik−.r0dx0 (7.74)

note, a and b are also functions of ζ ′ which of course are similarly periodic. Also, the

second of the two integrals above becomes after the change x0 → x0 + nT

∫ 0

−ηT
(aζ ′(x0 + nT )− b)ei(k−x (x0+nT )+k−z ζ(x0+nT ))dx0 (7.75)

again finally giving

∫ −nT

−(nT+ηT )
(aζ ′ − b)eik−.r0dx0 = eik−x nT

∫ 0

−ηT
(aζ ′ − b)eik−.r0dx0 (7.76)

7.5.4 Complete Solution

The final general result for periodically rough surfaces becomes

ρS = − 1
4LR0 cos θI

{
2Wn

∫ T

0
(aζ ′ − b)eik−.r0dx0 + e−2inπp

∫ ηT

0
(aζ ′ − b)eik−.r0dx0+

(7.77)

e2inπp
∫ 0

−ηT
(aζ ′ − b)eik−.r0dx0

}
(7.78)

We stress that the edge effects ignored as being irrelevant by Beckmann, [8], (if L À T )

were found not to be by Ogilvy, [57], who states that they cannot be neglected (unless

η = 0) as the correct result is found only when they are included.

Notice again that if we take the limit up to infinite surfaces the edge terms disappear
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through division by L, we may ignore the actual integration because it is up to ηT at

most, this is much smaller than L of course. If this is the case the integral becomes

ρS = − lim
L→∞

{
Wn

2LR0 cos θI

∫ T

0
(aζ ′ − b)eik−.r0dx0

}
(7.79)

Note that for this limit to be taken the infinite extension, n →∞ of the sum W , must be

considered. We will now consider the simplifications possible to this integral.

7.6 Perfect Conductivty

The case of perfect conductivity has already been considered for the smooth surface case,

now consider the case where ζ ′ 6= 0 and R = ±1, R0 = ±1 for each case of polarisation.

Then the amplitude term aζ ′− b has no x dependence except through ζ ′, a and b are now

constant.

7.6.1 Main Integral

Taking these values outside the integral (7.79), excluding the edge terms momentarily

ρS =
∓Wn

2(n + η) cos θI

1
T

{
a

∫ T

0
ζ ′eik−.r0dx0 − b

∫ T

0
eik−.r0dx0

}
(7.80)

We can integrate the first of these integrals using integration by parts, it becomes

a

∫ T

0
ζ ′eik−.r0dx0 =

aeik−.r0

ik−z

∣∣∣∣∣
T

0

− ak−x
k−z

∫ T

0
eik−.r0dx0 (7.81)

we get

ρS =
∓Wn

2(n + η) cos θI

1
T





aeik−.r0

ik−z

∣∣∣∣∣
T

0

−
(

ak−x
k−z

+ b

) ∫ T

0
eik−.r0dx0



 (7.82)

=
±Wn

2(n + η) cos θI

1
T





(
ak−x
k−z

+ b

) ∫ T

0
eik−.r0dx0 − aeik−.r0

ik−z

∣∣∣∣∣
T

0



 (7.83)
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7.6.2 Edge Terms

The two other integrals form the solutions to the edge of the surface, ie the edge contri-

butions, they are given by (using k−x T = 2πp)

∓ 1
4L cos θI

{
e−2inπp

∫ ηT

0
(aζ ′ − b)eik−.r0dx0 + e2inπp

∫ 0

−ηT
(aζ ′ − b)eik−.r0dx0

}
(7.84)

following the same procedure as for the main integral, the two integrals become

e−2inπp

[
a

∫ ηT

0
ζ ′eik−.r0dx0 − b

∫ ηT

0
eik−.r0dx0

]
+e2inπp

[
a

∫ 0

−ηT
ζ ′eik−.r0dx0 − b

∫ 0

−ηT
ζ ′eik−.r0dx0

]

(7.85)

as above the integrals containing ζ ′ become using integration by parts

∫ ηT

0
ζ ′eik−z ζeik−x x0dx0 =

eik−.r0

ik−z

∣∣∣∣∣
ηT

0

− k−x
k−z

∫ ηT

0
eik−.r0dx0 (7.86)

∫ 0

−ηT
ζ ′eik−z ζeik−x x0dx0 =

eik−.r0

ik−z

∣∣∣∣∣
0

−ηT

− k−x
k−z

∫ 0

−ηT
eik−.r0dx0 (7.87)

giving finally

e−2inπp





aeik−.r0

ik−z

∣∣∣∣∣
ηT

0

−
(

ak−x
k−z

+ b

) ∫ ηT

0
eik−.r0dx0



 (7.88)

e2inπp





aeik−.r0

ik−z

∣∣∣∣∣
0

−ηT

−
(

ak−x
k−z

+ b

) ∫ 0

−ηT
eik−.r0dx0



 (7.89)

7.6.3 Total Solution

The complete solution is then

±2Wn

4L cos θI

{(
ak−x
k−z

+ b

) ∫ T

0
eik−.r0dx0 +

aeik−z ζ(0)

ik−z

}
+ E(T ) (7.90)

where the edge terms E(T ) are made up of the terms

±1
4L cos θI






e2inπp

(
ak−x
k−z

+ b

) ∫ 0

−ηT
eik−.r0dx0 − aeik−.r0

ik−z

∣∣∣∣∣
0

−ηT


 + (7.91)
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e−2inπp




(
ak−x
k−z

+ b

) ∫ ηT

0
eik−.r0dx0 − aeik−.r0

ik−z

∣∣∣∣∣
ηT

0


− 2Wn

(
aei(k−x T+k−z ζ(T ))

ik−z

)

 (7.92)

where the last term above is included in the edge terms since it is evaluated at x = T at

the far end of the surface.

7.6.4 Even Functions

This occurs when

ζ(−x) = ζ(x) (7.93)

⇒ ζ ′(−x) = −ζ ′(x) (7.94)

(refer to appendix) if this is the case we find

∫ 0

−ηT
eik−.r0dx0 → −

∫ −ηT

0
eik−.r0dx0 (7.95)

=
∫ ηT

0
e−ik−x x0eik−z ζdx0 (7.96)

Including the extra term in front e2inπp ie

e2inπp
∫ ηT

0
e−ik−x x0eik−z ζdx0 (7.97)

and the other term for the second of these integrals is

e−2inπp
∫ ηT

0
eik−x x0eik−z ζdx0 (7.98)

adding these two terms

∫ ηT

0
[ei(2nπp−k−x x0) + e−i(2nπp−k−x x0)]eik−z ζdx0 (7.99)

putting the coefficient ak−x
k−z

+ b in front as in (7.79)

=

(
ak−x
k−z

+ b

) ∫ ηT

0
2 cos(2nπp− k−x x0)eik−z ζdx0 (7.100)
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Similarly the other terms evaluated between [0, ηT ], [−ηT, 0] become

e−2inπp


 aeik−.r0

ik−z

∣∣∣∣∣
ηT

0


 =

a

ik−z

(
ei(k−x ηT+k−z ζ(ηT )) − eik−z ζ(0)

)
e−2inπp (7.101)

=
a

ik−z

(
e2iπp(η−n)ek−z ζ(ηT ) − eik−z ζ(0)e−2inπp

)
(7.102)

and

e2inπp


 aeik−.r0

ik−z

∣∣∣∣∣
0

−ηT


 =

a

ik−z

(
eik−z ζ(0) − ei(−k−x ηT+k−z ζ(−ηT ))

)
e2inπp (7.103)

=
a

ik−z

(
eik−z ζ(0)e2inπp − e−2iπp(η−n)ek−z ζ(ηT )

)
(7.104)

since ζ is even. Adding these two terms

a

ik−z

(
2i sin(2πp(η − n))ek−z ζ(ηT ) + 2i sin(2nπp)eik−z ζ(0)

)
(7.105)

The total expression for the edge terms becomes

±1
4L cos θI

{(
ak−x
k−z

+ b

) ∫ ηT

0
2 cos(2nπp− k−x x0)eik−z ζdx0 − a

ik−z

(
2i sin(2πp(η − n))ek−z ζ(ηT )

+ 2i sin(2nπp)eik−z ζ(0)
)
− 2Wn

(
aei(k−x T+k−z ζ(T ))

ik−z

)}
(7.106)

giving

±1
4L cos θI

{(
ak−x
k−z

+ b

) ∫ ηT

0
2 cos(2nπp− k−x x0)eik−z ζdx0 − a

ik−z

(
2[i sin(2πp(η − n))]ek−z ζ(ηT )

+2[i sin(2nπp)]eik−z ζ(0) + 2Wnei(k−x T+k−z ζ(T ))
)}

(7.107)

Total Solution

The complete solution for ζ even is then

±2Wn

4L cos θI

{(
ak−x
k−z

+ b

) ∫ T

0
eik−.r0dx0 +

aeik−z ζ(0)

ik−z

}
+ E(T ) (7.108)

with the edge term given by

E(T ) =
±1

4LR0 cos θI

{(
ak−x
k−z

+ b

) ∫ ηT

0
2 cos(2nπp− k−x x0)eik−z ζdx0 − a

ik−z

(
2[i sin(2πp(η − n))]ek−z ζ(ηT )

+2[i sin(2nπp)]eik−z ζ(0) + 2Wnei(k−x T+k−z ζ(T ))
)}

(7.109)
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7.6.5 Odd Functions

If on the other hand ζ is odd so that

ζ(−x) = −ζ(x) (7.110)

⇒ ζ ′(−x) = ζ ′(x) (7.111)

we may carry out an analogous procedure to that above and arrive at

e−2inπp


 aeik−.r0

ik−z

∣∣∣∣∣
ηT

0


 =

a

ik−z

(
ei(k−x ηT+k−z ζ(ηT )) − eik−z ζ(0)

)
e−2inπp (7.112)

=
a

ik−z

(
e−i(2nπp−k−x ηT−k−z ζ(ηT )) − eik−z ζ(0)e−2inπp

)
(7.113)

e2inπp


 aeik−.r0

ik−z

∣∣∣∣∣
0

−ηT


 =

a

ik−z

(
eik−z ζ(0) − e−i(k−x ηT+k−z ζ(ηT ))

)
e2inπp (7.114)

=
a

ik−z

(
eik−z ζ(0)e2inπp − ei(2nπp−k−x ηT−k−z ζ(ηT ))

)
(7.115)

adding gives

a

ik−z

(
2i sin(2nπp)eik−z ζ(0) − 2i sin(2πp(n− η)− k−z ζ(ηT ))

)
(7.116)

and

e−2inπp

(
ak−x
k−z

+ b

) ∫ ηT

0
eik−.r0dx0 =

(
ak−x
k−z

+ b

) ∫ ηT

0
ei(−2nπp+k−x x0+k−z ζ(x0)dx0 (7.117)

e2inπp

(
ak−x
k−z

+ b

) ∫ 0

−ηT
eik−.r0dx0 =

(
ak−x
k−z

+ b

) ∫ ηT

0
e−i(−2nπp+k−x x0+k−z ζ(x0))dx0 (7.118)

adding (
ak−x
k−z

+ b

) ∫ ηT

0
2 cos(−2nπp + k−x x0 + k−z ζ(x0))dx0 (7.119)

and the last term
aeik−.r0

ik−z

∣∣∣∣∣
T

0

=
a

ik−z

(
ei(k−x T+k−z ζ(T )) − eik−z ζ(0)

)
(7.120)

=
a

ik−z

(
ei(2πp+k−z ζ(T )) − eik−z ζ(0)

)
(7.121)
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Complete Solution

Substituting these terms into the final expression we get for ζ odd the solution

±2Wn

4L cos θI

{(
ak−x
k−z

+ b

) ∫ T

0
eik−.r0dx0 +

aeik−z ζ(0)

ik−z

}
+ E(T ) (7.122)

where the edge term E(T ) is

E(T ) =
±1

4L cos θI

{(
ak−x
k−z

+ b

) ∫ ηT

0
2 cos(2nπp− k−x x0 − k−z ζ(x0))dx0−

a

ik−z

(
2[i sin(2πp(n− η)− k−z ζ(ηT ))] + 2[i sin(2nπp)+]eik−z ζ(0) + 2Wnei(k−x T+k−z ζ(T ))

)}

(7.123)

7.6.6 Solution in Terms of θI , θS

The expression in front of (7.122) can be expressed in terms of θI , θS alone since R‖,⊥ = ±1

the terms a and b become

a‖ = 2 sin θS , b‖ = 2 cos θS (7.124)

a⊥ = 2 sin θI , b⊥ = −2 cos θI (7.125)

and the ratio k−x
k−z

is given by
sin θS − sin θI

cos θS + cos θI
(7.126)

giving ak−x
k−z

+ b as

±1
4L cos θI

(
ak−x
k−z

+ b

)
= ± 1 + cos(θI + θS)

2L cos θI(cos θS + cos θI)
(7.127)

independent of the polarisation. However the coefficient

±a

4ik−z L cos θI
=

∓i sin θ‖,⊥

2Lk cos θI(cos θS + cos θI)
(7.128)

is not, where

sin θ‖,⊥ =





sin θS for ‖
sin θI for ⊥

(7.129)
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7.6.7 Total Solutions : Even and Odd Functions

Even Functions

Therefore the expression for the scattering solution for a perfectly conducting substrate,

with ζ even is

ρ‖,⊥(θI , θS) =
±1

L cos θI(cos θS + cos θI)

{
Wn[1 + cos(θI + θS)]

∫ T

0
eik−.r0dx0 − i sin θ‖,⊥eik−z ζ(0)

2k

}
+

E‖,⊥(T ) (7.130)

where the edge term is

E‖,⊥(T ) =
±[1 + cos(θI + θS)]

L cos θI(cos θS + cos θI)

∫ ηT

0
2 cos(2nπp− k−x x0)eik−z ζdx0− (7.131)

i sin θ‖,⊥

2Lk cos θI(cos θS + cos θI)

(
2[i sin(2πp(η − n))]ek−z ζ(ηT ) + 2[i sin(2nπp)]eik−z ζ(0) + 2Wnei(k−x T+k−z ζ(T ))

)

(7.132)

Odd Functions

Similarly for ζ odd we get

ρ‖,⊥(θI , θS) =
±1

L cos θI(cos θS + cos θI)

{
Wn[1 + cos(θI + θS)]

∫ T

0
eik−.r0dx0 +

±i sin θ‖,⊥eik−z ζ(0)

2k

}
+

E‖,⊥(T ) (7.133)

where the edge term is

E‖,⊥(T ) =
±[1 + cos(θI + θS)]

L cos θI(cos θS + cos θI)

∫ ηT

0
2 cos(2nπp− k−x x0 − k−z ζ(x0))dx0+

i sin θ‖,⊥

2Lk cos θI(cos θS + cos θI)

(
2[i sin(2πp(n− η)− k−z ζ(ηT ))] + 2[i sin(2nπp)]eik−z ζ(0)+

2Wnei(k−x T+k−z ζ(T ))
)

(7.134)
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7.7 Mean Plane Reflection Coefficient

The second possible case for simplification is the approach of Beckmann, [8]. By letting

the reflection coefficient R(ϑ) be averaged over the mean plane so that

R(ϑ) ' R(θI) (7.135)

This variation has already been dealt with extensively, [8], and as such will not be looked

at here.

7.8 Varying Surface Reflection coefficient

If we allow the surface reflection coefficient R(ϑ) to vary with ζ ′, then the scattering

integral for periodic surfaces is given by (7.79)

ρS = − 1
4LR0 cos θI

{
2Wn

∫ T

0
(aζ ′ − b)eik−.r0dx0 + e−2inπp

∫ ηT

0
(aζ ′ − b)eik−.r0dx0+

e2inπp
∫ 0

−ηT
(aζ ′ − b)eik−.r0dx0

}
(7.136)

7.8.1 Main Integral

Looking only at the first of these leaving the edge terms for later

ρS = − Wn

2LR0 cos θI

∫ T

0
(aζ ′ − b)eik−.r0dx0 (7.137)

upon substitution of the terms a and b from (6.96) and (6.97) section (6.4.1) we get

ρS = − Wn

2LR0 cos θI

∫ T

0

{
(sin θI + sin θS)ζ ′ + (sin θS − sin θI)Rζ ′ + (cos θI − cos θS)−

R(cos θI + cos θS)} eik−.r0dx0 (7.138)

= − Wn

2LR0 cos θI

{
(sin θI + sin θS)

∫
ζ ′eik−.r0dx0 + (sin θS − sin θI)

∫ T

0
Rζ ′eik−.r0dx0+

(7.139)

(cos θI − cos θS)
∫ T

0
eik−.r0dx0 − (cos θI + cos θS)

∫ T

0
Reik−.r0dx0

}
(7.140)
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where the constant terms involving θI , θS were taken out of the front of each particular

integral. Integrals of the form
∫

ζ ′eik−.r0dx0 have already been considered. The remaining

integrals having the reflection coefficient represented explicitly will now be considered. We

will adopt the technique of Parkins, [61], who represented the reflection coefficient R(ζ ′) as

a Taylor series expansion about the mean slope, or equivalently about the smooth surface

reflection coefficient R0, which of course is not a function of ζ ′. This method did not

consider the convergence of this series and so only considered the first term of the series,

as an approximation for R.

We will extend his method with the convergence of the series studied specifically.

That is

R(ζ ′) = R0+
dR(ζ ′)

dζ ′

∣∣∣∣
ζ′=0

ζ ′+
d2R(ζ ′)

dζ ′2

∣∣∣∣∣
ζ′=0

ζ ′2

2!
+

d3R(ζ ′)
dζ ′3

∣∣∣∣∣
ζ′=0

ζ ′3

3!
+...+O(ζ ′m)+... (7.141)

here R(0) ≡ R0. The coefficients, R0, are given by

R
‖
0(r0) =

N2
2 cos θI −

√
N2

2 − sin2 θI

N2
2 cos θI +

√
N2

2 − sin2 θI

(7.142)

R⊥
0 (r0) =

cos θI −
√

N2
2 − sin2 θI

cos θI +
√

N2
2 − sin2 θI

(7.143)

for the two types of polarisation. For ease of notation write the individual derivatives of

R at ζ ′ = 0 as
dmR(ζ ′)

dζ ′m

∣∣∣∣
ζ′=0

= R
(m)
0 (7.144)

so the series becomes

R(ζ ′) = R
(0)
0 + R

(1)
0 ζ ′ + R

(2)
0

ζ ′2

2!
+ R

(3)
0

ζ ′3

3!
+ ... + O(ζ ′m) + .. (7.145)

then this series converges uniformly to R(ζ ′), [75], provided (by the ratio test) that for

the mth term R
(m)
0

ζ′m
m! .

lim
m→∞

∣∣∣∣∣
R

(m+1)
0

R
(m)
0

∣∣∣∣∣
|ζ ′|

m + 1
< 1 (7.146)
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provided this result is independent of x and the mth term tends to zero in the limit as

m →∞.

If this is the case we have a valid expansion for R about the mean plane and any solution

of the scattering integral will be a valid solution provided it obeys the criterion (7.146)

above. We will find this is fairly easily obeyed in certain cases we wish to study. The

above is an extension of the work of Parkins, [61], who took only terms up to O(1) in the

derivatives and did not consider the entire series as a valid representation of the scattering

coefficient.

Substituting this series in the integrals, (7.140), we have the solution for the scattering

coefficient as

ρS = − Wn

2LR0 cos θI

{
(sin θI + sin θS)

∫ T

0
ζ ′eik−.r0dx0+ (7.147)

(sin θS − sin θI)
∫ T

0

(
R

(0)
0 + R

(1)
0 ζ ′ + R

(2)
0

ζ ′2

2!
+ ...

)
ζ ′eik−.r0dx0+ (7.148)

(cos θI − cos θS)
∫ T

0
eik−.r0dx0 − (cos θI + cos θS)

∫ T

0
(R(0)

0 + R
(1)
0 ζ ′ + R

(2)
0

ζ ′2

2!
+ ...)eik−.r0dx0

}

(7.149)

we are presented with two types of integrals

∫ T

0
ζ ′mei(k−x x0+k−z ζ(x0))dx0 (7.150)

m a positive integer, and ∫ T

0
ei(k−x x0+k−z ζ(x0))dx0 (7.151)

whose solution is possible with some assumptions on the values taken by ζ.

7.8.2 The Case θS = θI = 0

Since we are interested in comparing the rough case with the smooth one and since the

smooth case directs all of the scattered energy in the specular direction, θS = θI , we must

observe the scattered energy from the rough case in the specular direction also. If this is
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the case we find

ρS = − Wn

2LR0 cos θI

{
(2 sin θI)

∫ T

0
ζ ′eik−.r0dx0 − (2 cos θI)

∫ T

0

(
R

(0)
0 + R

(1)
0 ζ ′+

R
(2)
0

ζ ′2

2!
+ ...

)
eik−.r0dx0

}
(7.152)

Now, if we only look at the normal angle of incidence, θI1 = 0, as preferred in industrial

measurement, we find that p = 0 ⇒ W = 1 and k−x = 0, then the scattering integral

reduces to

ρS =
n

LR0

∫ T

0

(
R

(0)
0 + R

(1)
0 ζ ′ + R

(2)
0

ζ ′2

2!
+ ...

)
eik−z ζ(x0)dx0 (7.153)

Now, obtaining the derivatives of the reflection coefficients R(θI = 0)

R‖(r0) =
N2

2 −
√

(N2
2 − 1)ζ ′2 + N2

2

N2
2 +

√
(N2

2 − 1)ζ ′2 + N2
2

(7.154)

R⊥(r0) =
1−

√
(N2

2 − 1)ζ ′2 + N2
2

1 +
√

(N2
2 − 1)ζ ′2 + N2

2

(7.155)

Notice R is an even function of ζ ′. The derivatives are

dR‖

dζ ′
=

2N2
2 (1−N2

2 )ζ ′√
(N2

2 − 1)ζ ′2 + N2
2 (N2

2 +
√

(N2
2 − 1)ζ ′2 + N2

2 )2
(7.156)

and
dR⊥

dζ ′
=

2(1−N2
2 )ζ ′√

(N2
2 − 1)ζ ′2 + N2

2 (1 +
√

(N2
2 − 1)ζ ′2 + N2

2 )2
(7.157)

evaluated at ζ ′ = 0
dR‖,⊥

dζ ′

∣∣∣∣∣
ζ′=0

= 0 (7.158)

the second derivatives evaluated at ζ ′ = 0 are

d2R‖,⊥

dζ ′2

∣∣∣∣∣
ζ′=0

=
2(1−N2)

N2(1 + N2)
(7.159)

with R0 at ζ ′ = 0 being

R
‖
0 = −1−N2

1 + N2
(7.160)
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R⊥
0 =

1−N2

1 + N2
(7.161)

Since R is an even function of ζ ′ its odd order derivatives are all zero when evaluated at

ζ ′ = 0, leaving only those at the even orders, ie

R
(0)
0 + R

(2)
0

ζ ′2

2!
+ R

(4)
0

ζ ′4

4!
+ ... + R

(2m)
0

ζ ′2m

(2m)!
+ ... (7.162)

where the term R
(0)
0 is the zeroth derivative at ζ ′ = 0, in other words the function R(ζ ′)

is not differentiated but is evaluated at ζ ′ = 0. Therefore R
(0)
0 ≡ R(0) ≡ R0 the integral

is now

ρS =
n

LR0

∫ T

0

(
R

(0)
0 + R

(2)
0

ζ ′2

2!
+ R

(4)
0

ζ ′4

4!
+ ... + R

(2m)
0

ζ ′2m

2m!
+ ...

)
eik−z ζ(x0)dx0 (7.163)

The integral becomes

=
n

LR0

∫ T

0

∞∑

m=0

R
(2m)
0

ζ ′2m

2m!
eik−z ζ(x0)dx0 (7.164)

or

=
n

LR0

∞∑

m=0

R
(2m)
0

2m!

∫ T

0
ζ ′2meik−z ζ(x0)dx0 (7.165)

interchanging as usual the order of integration and summation. Note, that the term by

term integration is only possible if the series is uniformly convergent, [75], which we have

established, provided the convergence condition, (7.146), is satisfied.

7.8.3 Edge Terms

As for the main integral making the substitutions for a and b in terms of θS , θI and R,

and putting θS = θI = 0,⇒ k−x = p = 0 we find the edge integrals become

1
2LR0

{∫ ηT

0
Reik−.r0dx0 +

∫ 0

−ηT
Reik−.r0dx0

}
(7.166)

replacing R with the Taylor series from above

E(T ) =
1

2LR0

{ ∞∑

m=0

R
(2m)
0

2m!

∫ ηT

0
ζ ′2meik−.r0dx0 +

∞∑

m=0

R
(2m)
0

2m!

∫ 0

−ηT
ζ ′2meik−.r0dx0

}

(7.167)
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=
1

2LR0

{ ∞∑

m=0

R
(2m)
0

2m!

∫ ηT

0
ζ ′(x0)2meik−z ζ(x0))dx0 +

∞∑

m=0

R
(2m)
0

2m!

∫ ηT

0
ζ ′(−x)2meik−z ζ(−x0))dx0

}

(7.168)

changing the variable in the second integral. Consider the odd and even cases

Even Case

The integrals become, remembering ζ(−x) = ζ(x), ζ ′(−x) = −ζ ′(x)

E(T ) =
1

2LR0

{ ∞∑

m=0

R
(2m)
0

2m!

∫ ηT

0
ζ ′(x0)2meik−z ζ(x0)(1− 1)dx0

}
= 0 (7.169)

no edge term contribution from the even case.

Odd Case

We get using ζ(−x) = −ζ(x), ζ ′(−x) = ζ ′(x)

E(T ) =
1

2LR0

∞∑

m=0

R
(2m)
0

2m!

∫ ηT

0
ζ ′(x0)2m(eik−z ζ(x0)) + e−ik−z ζ(x0)))dx0 (7.170)

=
1

LR0

∞∑

m=0

R
(2m)
0

2m!

∫ ηT

0
ζ ′2m cos k−z ζdx0 (7.171)

the edge terms only making a contribution, in the specular normal incidence case, when

the surface profile is an odd function of distance.

7.9 Specific Periodic Surface Profiles

We choose the simple profile

ζ(x0) = A sin
(

2πx0

T

)
(7.172)

Since this function agrees with the boundary values of the surface ζ(L) = ζ(−L) = 0 if

L = nT only, mentioned in section (7.3.2). A, is the amplitude or maximum height of the

surface variation and T , the period of the surface undulation. These values are somewhat
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analogous to the statistical parameters σ ∼ A and λ0 ∼ A/T .

Then

ζ ′(x0) =
2πA

T
cos

(
2πx0

T

)
(7.173)

7.9.1 Solution Simplifications, A = 0, T →∞

If we substitute for this function into the original integral we have

ρS = − 1
4LR0 cos θI

∫ L

−L
(aζ ′ − b)ei(k−x x0+k−z ζ(x0))dx0 (7.174)

with

ζ(x0) = A sin
(

2πx0

T

)
, ζ ′(x0) =

2πA

T
cos

(
2πx0

T

)
(7.175)

two very obvious simplifications come to mind. If the amplitude of surface corrugations is

very small or zero (A = 0) the solution reduces to that of a flat surface and is expressed

by (7.45) section (7.3.1). Similarly, if we let the period T → ∞ (provided x stays finite)

the solution is also that of the flat case. This is true since

lim
A→0

ζ = lim
A→0

ζ ′ = 0 (T > 0) (7.176)

and

lim
T→∞

ζ = lim
T→∞

ζ ′ = 0 (x finite) (7.177)

note that, strictly speaking, we are not considering surfaces with infinite period but as

long as the ratio x/T ' 0 this will suffice.

This implies that any solution must tend to the smooth case as either A → 0 or T →∞.

In addition, the periodic surface must obey the tangent plane criterion calculated in the

appendix as

T À
√

πAλ (7.178)

this being the criterion necessary for the valid use of Kirchhoff theory.
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7.9.2 The Main Integral

Since ζ is periodic with period 2π, convert the range of integration by putting 2πx0
T → x0

so the limits of the integral become x0 : 0 → 2π and dx0 → T
2πdx0 ie

ζ = A sinx0 (7.179)

ζ ′2m =
(

2πA

T

)2m

cos2m x0 (7.180)

ρS =
nT

2π(n + η)R0T

∞∑

m=0

(
2πA

T

)2m R
(2m)
0

(2m)!

∫ 2π

0
cos2m x0e

ik−z A sin x0dx0 (7.181)

=
n

2π(n + η)R0

∞∑

m=0

(
2πA

T

)2m R
(2m)
0

(2m)!

∫ 2π

0
cos2m x0e

ik−z A sin x0dx0 (7.182)

The general solution for a periodic surface

7.9.3 Convergence Criteria for a Valid Solution

The series
∞∑

m=0

R
(2m)
0

(2m)!
ζ ′2m (7.183)

=
∞∑

m=0

(
2πA

T

)2m R
(2m)
0

(2m)!
cos2m x0 (7.184)

is uniformly convergent provided (by the ratio test)

lim
m→∞

(
2πA

T

)2
∣∣∣∣∣
R

(2m+2)
0

R
(2m)
0

∣∣∣∣∣
| cos2 x0|

(2m + 2)(2m + 1)
< 1 (7.185)

for m a positive integer and A, T positive and real. The result relies on

(
2πA

T

)2

| cos2 x0| lim
m→∞

1
(2m + 2)(2m + 1)

∣∣∣∣∣
R

(2m+2)
0

R
(2m)
0

∣∣∣∣∣ < 1 (7.186)

Note that

max| cos2 x0| ≤ 1 (7.187)

so it is irrelevant for the determination of the criterion for convergence.



150 CHAPTER 7. UNOXIDISED ROUGH STEEL SURFACES

Perpendicular Polarisation

The largest 2mth term for each R
(2m)
0 in powers of N2 is given by (refer to appendix)

(2m)(2m− 3)!
2m−22m−2(m− 2)!

[
(N2

2 − 1)m

N2m−3
2 (1 + N2)3

]
(7.188)

where this term is the upper bound for each R
(2m)
0 , for perpendicular polarisation. So the

ratio R
(2m+2)
0 /R

(2m)
0 becomes

R
(2m+2)
0

R
(2m)
0

=
(2m + 2)(2m− 1)!
2m−12m−1(m− 1)!

2m−22m−2(m− 2)!
(2m)(2m− 3)!

×
[

(N2
2 − 1)m+1

N2m−1
2 (1 + N2)3

N2m−3
2 (1 + N2)3

(N2
2 − 1)m

]

(7.189)

=
(2m− 1)(2m− 2)(2m + 2)

4(2m)(m− 1)

[
(N2

2 − 1)
N2

2

]
(7.190)

=
(2m− 1)(m + 1)

2m

[
(N2

2 − 1)
N2

2

]
(7.191)

the convergence criterion becomes

(
2πA

T

)2

lim
m→∞

∣∣∣∣∣
(2m− 1)(m + 1)

2m(2m + 2)(2m + 1)

[
(N2

2 − 1)
N2

2

]∣∣∣∣∣ < 1 (7.192)

then, since

lim
m→∞

∣∣∣∣
(2m + 1)(m + 1)

2m(2m + 2)(2m + 1)

∣∣∣∣ = 0 (7.193)

which implies the series is uniformly convergent independent of N2. Notice also that for

the 2mth term

lim
m→∞

(
2πA

T

)2m R
(2m)
0

(2m)!
cos2m x0 (7.194)

= lim
m→∞

(
2πA

T

)2m (2m)(2m− 3)!
22m−4(2m + 1)(2m + 2)(m− 2)!

[
(N2

2 − 1)m

N2m−3
2 (1 + N2)3

]
cos2m x0 = 0

(7.195)

for A/T finite which is always true, this implies the series not only converges, but converges

to the function R.
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Parallel Polarisation

For parallel polarisation the 2mth term is

(2m)(2m− 3)!
2m−22m−2(m− 2)!

[
(N2

2 − 1)m

N2m
2 (1 + N2)3

]
(7.196)

substitute into the ratio R
(2m+2)
0 /R

(2m)
0

R
(2m+2)
0

R
(2m)
0

=
(2m + 2)(2m− 1)!
2m−12m−1(m− 1)!

2m−22m−2(m− 2)!
(2m)(2m− 3)!

×
[

(N2
2 − 1)m+1

N2m+2
2 (1 + N2)3

N2m
2 (1 + N2)3

(N2
2 − 1)m

]

(7.197)

=
(2m− 1)(m + 1)

2m(m− 1)

[
(N2

2 − 1)
N2

2

]
(7.198)

the convergence criterion becomes

(
2πA

T

)2

lim
m→∞

∣∣∣∣∣
(2m− 1)(m + 1)

2m(2m + 2)(2m + 1)

[
(N2

2 − 1)
N2

2

]∣∣∣∣∣ < 1 (7.199)

the same as the one above. So the series converges as well. The higher power of N2 has

no effect.

7.9.4 Evaluation of the Integral
∫ 2π
0 cos2m x0e

ik−z A sin x0dx0

Using the definition of cosine we have

cos2m x0 =

(
eix0 + e−ix0

2

)2m

(7.200)

=
e−2mix0

22m
(1 + e2ix0)2m (7.201)

=
e−2mix0

22m

(
1 + 2me2ix0 +

2m(2m− 1)
2!

e4ix0 +
2m(2m− 1)(2m− 2)

3!
e6ix0 + ...

+
2m(2m− 1)...(1)

(2m)!
e2mix0

)
(7.202)

=
1

22m

(
e−2mix0 + 2me(2−2m)ix0 +

2m(2m− 1)
2!

e(4−2m)ix0+

2m(2m− 1)(2m− 2)
3!

e(6−2m)ix0 + ... + 1
)

(7.203)
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=
2m∑

j=0

1
22m




2m

j


 e(2j−2m)ix0 (7.204)

where 


2m

j


 =

2m(2m− 1)(2m− 2)(2m− 3)...(2m− j + 1)
(j)!

(7.205)

by the binomial theorem which converges for all integer m. The integral becomes

ρS =
n

2π(n + η)R0

∞∑

m=0

(
2πA

T

)2m R
(2m)
0

(2m)!R0

∫ 2π

0
cos2m x0e

ik−z A sin x0dx0 (7.206)

=
n

2R0π(n + η)

∞∑

m=0

(
2πA

T

)2m R
(2m)
0

(2m)!

∫ 2π

0

2m∑

j=0

1
22m




2m

j


 e(2j−2m)ix0eik−z A sin x0dx0

(7.207)

=
n

R0(n + η)

∞∑

m=0

(
2πA

T

)2m R
(2m)
0

(2m)!

2m∑

j=0

1
22m




2m

j


 1

2π

∫ 2π

0
ei[k−z A sin x0−(2m−2j)x0]dx0

(7.208)

The integral is easily evaluated in terms of Bessel functions of the first kind (see, [95])

1
2π

∫ 2π

0
ei[k−z A sin x0−(2m−2j)x0dx0 = J(2m−2j)(k

−
z A) (7.209)

since k−z = −4π
λ because θI = θS = 0. Where J2j is an even ordered Bessel function of the

first kind. The final result being

ρS =
n

R0(n + η)

∞∑

m=0

2m∑

j=0

(
2πA

T

)2m R
(2m)
0

(2m)!
1

22m




2m

j


 J(2m−2j)

(
4πA

λ

)
(7.210)

since J2j(−x) = J2j(x), [95]. This forms the general solution to the scattering integral for

periodic surface corrugations in the specular direction at normal incidence.

7.9.5 The Edge Terms

The edge terms are given in (7.171) as

=
1

LR0

∞∑

m=0

R
(2m)
0

(2m)!

∫ ηT

0
ζ ′2m cos(k−z ζ)dx0 (7.211)
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substituting for ζ as a sinusoid and changing the integration variable to X0 = 2πx0
ηT ,

provided η 6= 0. If η = 0, the edge terms may be ignored and the solution is that of the

main integral only.

ζ = A sinX0, ζ
′ =

2πA

T
cosX0, dx0 =

ηT

2π
dX0, X0 : 0 → 2π, (7.212)

=
η

2π(n + η)R0

∞∑

m=0

(
2πA

T

)2m R
(2m)
0

(2m)!

∫ 2π

0
cos2m ηX0 cos(k−z A sin ηX0)dX0 (7.213)

expressing the first cosine term as a series and the second by its definition we have two

integrals both of which have been done in the previous section, ie (also putting X0 → x0

again)

=
η

4π(n + η)R0

∞∑

m=0

(
2πA

T

)2m R
(2m)
0

(2m)!

2m∑

j=0

1
22m




2m

j




{∫ 2π

0
ei[k−z A sin ηx0−η(2m−2j)x0]dx0+

(7.214)
∫ 2π

0
ei[−k−z A sin ηx0−η(2m−2j)x0]dx0

}
(7.215)

=
1

4π(n + η)R0

∞∑

m=0

(
2πA

T

)2m R
(2m)
0

(2m)!

2m∑

j=0

1
22m




2m

j




{∫ 2π

0
ei[k−z A sin(ηx0)−(2m−2j)(ηx0)]d(ηx0)+

(7.216)
∫ 2π

0
ei[−k−z A sin(ηx0)−η(2m−2j)(ηx0)]d(ηx0)

}
(7.217)

then integrating over the variable ηx0 instead of x0 we find again

=
1

2(n + η)R0

∞∑

m=0

(
2πA

T

)2m R
(2m)
0

(2m)!

2m∑

j=0

1
22m




2m

j




{
J(2m−2j)

(
k−z A

)
+ J(2m−2j)

(−k−z A
)}

(7.218)

since J2u(−x) = J2u(x)

=
1

(n + η)R0

∞∑

m=0

(
2πA

T

)2m R
(2m)
0

(2m)!

2m∑

j=0

1
22m




2m

j


 J(2m−2j)

(
k−z A

)
(7.219)



154 CHAPTER 7. UNOXIDISED ROUGH STEEL SURFACES

7.9.6 The Complete Solution

Edge Terms included, η 6= 0

The complete solution to the scattering problem being

ρS =
n + 1

(n + η)R0

∞∑

m=0

2m∑

j=0

(
2πA

T

)2m R
(2m)
0

(2m)!
1

22m




2m

j


 J(2m−2j)

(
4πA

λ

)
(η 6= 0) (7.220)

the only difference in the terms above, (7.219), being the absence of n in the edge term,

the edge terms contribute significantly to the total scattering solution being of the same

order as the original solution.

Edge Terms Excluded, η = 0

Note that if η = 0 the edge integrals are zero leaving us with the original solution only, ie

ρS =
1

R0

∞∑

m=0

2m∑

j=0

(
2πA

T

)2m R
(2m)
0

(2m)!
1

22m




2m

j


 J(2m−2j)

(
4πA

λ

)
(η = 0) (7.221)

This result cannot be obtained by a substitution of η = 0 since the edge integral is only

valid if η 6= 0. However recalling the original integral if η = 0 the edge terms become zero

leaving us only the main integral which has the solution given above.

Solution Check

The integral is obviously finite and the extension to infinite surfaces is straightforward.

Applying the limit as n →∞, since L = (n + η)T and T is finite we get

ρS =
1

R0

∞∑

m=0

2m∑

j=0

(
2πA

T

)2m R
(2m)
0

(2m)!
1

22m




2m

j


 J(2m−2j)

(
4πA

λ

)
(7.222)

identical to the edge free case. Similarly we may check for the simplifications A = 0 and

T → ∞. Remembering that the first term of the series (7.184) is one (independent of T ,

J2m(0) = 1), then, all other terms are zero if either A = 0 or T → ∞. As expected we
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obtain the flat surface scattering coefficient ρS = 1. The solution satisfies all requirements,

however it is only a special case, specular at normal incidence. For a more thorough inves-

tigation and graphical solutions portraying all aspects of the problem we need a numerical

solution. This will be considered in the following chapters.

7.9.7 Comparison to Perfect Conducting Case

Substitute as above θS = θI = 0, ζ = A sin(2πx0/T ) etc in the solution (7.133) for the

perfectly Conducting case for an odd function we get

ρ‖,⊥(θI , θS) =
±n

(n + η)T

∫ T

0
eik−.r0dx0 +

±1
4(n + η)T

∫ ηT

0
(eik−z ζ + e−ik−z ζ)dx0 (7.223)

=
±n

(n + η)T

∫ T

0
eik−z A sin

(
2πx0

T

)
dx0 +

±1
4(n + η)T

∫ ηT

0
(eik−z A sin

(
2πx0

T

)
+ e−ik−z A sin

(
2πx0

T

)
)dx0

(7.224)

again converting to x0 : 0 → 2π

=
±n

2π(n + η)

∫ 2π

0
eik−z A sin x0dx0 +

±T

4π(n + η)T

∫ 2π

0
(eik−z A sin(ηx0) + e−ik−z A sin(ηx0))d(ηx0)

(7.225)

=
±n

(n + η)
J0

(
4πA

λ

)
+

±1
n + η

J0

(
4πA

λ

)
(7.226)

=
±(n + 1)
(n + η)

J0

(
4πA

λ

)
(7.227)

using J0(−x) = J0(x). This matches the solution with the expanded reflection coefficient

when the reflection coefficient derivatives are all zero since R = ±1.

7.9.8 The Approximate Solution

As a first order correction (1st order in R
(m)
0 ) to the solution take just the sum from

m = 0 → 1 the solution becomes

ρS =
n + 1

R0(n + η)

1∑

m=0

2m∑

j=0

(
2πA

T

)2m R
(2m)
0

(2m)!
1

22m




2m

j


 J(2m−2j)

(
4πA

λ

)
(7.228)
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=
n + 1

R0(n + η)

{
R

(0)
0 J0(

4πA

λ
) +

R
(2)
0

8

(
2πA

T

)2 [
J0

(
4πA

λ

)
+ J2

(
4πA

λ

)]}
(7.229)

The first approximation to the scattering integral is the first term in (7.229) or

ρS =
n + 1

R0(n + η)

{
R

(0)
0 J0

(
2πA

λ

)
+ O(R(2)

0 )
}

(7.230)

then approximately

ρS '
(n + 1)J0

(
4πA

λ

)

(n + η)
(7.231)

if, in addition, the dimensions of the scattering surface are an exact integer multiple of

the period, ie η = 0 (for large n)

ρS ' J0

(
4πA

λ

)
(7.232)

This is a useful expression considering that the terms of O(2) and above are in powers of

2πA/T which of course is already a small value. Similarly, higher order Bessel functions

do not contribute much to the solution as it is well known that

lim
n→∞Jn(x) → 0 for x finite (7.233)

(refer to appendix). In that case we find

RS = R0J0

(
4πA

λ

)
(7.234)

then for a specific polarisation

Ry = R0R
∗
0

[
J0

(
4πA

λ

)]2

(7.235)

giving for the average reflectivity

Ry =
[
J0

(
4πA

λ

)]2 R
‖
0R

∗‖
0 + R⊥

0 R∗⊥
0

2
(7.236)

where this is only one kind of averaging technique, others such as the square root average

is also possible, we will however use the simplest one. If we define

Ry0 =
R
‖
0R

∗‖
0 + R⊥

0 R∗⊥
0

2
(7.237)
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the flat surface reflectivity, then the rough surface emissivity is defined by

ε = 1−
[
J0

(
4πA

λ

)]2

Ry0 (7.238)

N.B. : If we were to have considered the order of the Bessel function rather than the

derivatives of R, then we would obtain the expression

ρS ' J0

(
4πA

λ

) [
1 +

1
4N2

(
2πT

T

)2
]

(7.239)

since R2
0 = ∓(2/N2)R0. Bessel function of order 2 or above have been discarded. This

presents the solution to the scattering problem up to zero order Bessel functions and

second order in the derivatives of R. It includes the effects of both optical roughness A/λ

and correlation length A/T .

The influence of the second of these parameters will be discussed further in the next

section. For the moment we will assume a solution of the form

ρS ' J0

(
4πA

λ

)

with the second parameter assumed smaller than 1 in most instances.

7.9.9 Consequences of the Periodic Solution

The solution of the scattering problem is

ε = 1−
[
J0

(
4πA

λ

)]2

Ry0 (7.240)

this has several important consequences.

The Bessel function J0 has the properties of decaying rapidly with distance from the origin,

it oscillates frequently with the zeros of the oscillation determined by the zeros of J0 which

occur when 4πA
λ is coincident with these zeros. They occur approximately when

A =
λ

4π
× {j0,1, j0,2, j0,3, ...} , [1] (7.241)
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where j0,i refers to the ith zeros of the zero order Bessel function (refer to appendix). The

first of these is the most important since this zero determines the point after which the

emissivity is no longer influenced by the Bessel term and instead becomes solely dependent

on the smooth surface reflection coefficient. This is true since as the ratio A/λ approaches

zero J0 approaches one. As we move further away from the origin we meet several zeros

of J0 and also note the decay of the amplitude of J0. This implies strong oscillations for

the emissivity as we approach the origin as well as a tendency to approach one as we get

closer to the origin. In summary the emissivity :

• will oscillate severely for A/λ → 0

• will oscillate about one for small values of A/λ

• will equal one when λ → 0

• oscillations will increase in period finally damping out at the first zero of J0, ie

4πA/λ = j0,1

• will approach that of the smooth case for values of 4πA/λ > j0,1

• will be exactly that of the smooth case if A = 0 or λ →∞

• will vary more with roughness the larger the value of A/λ

here our ratio, A/λ, plays the role of optical roughness σ/λ. These results are demon-

strated in Figures 7.9.1-7.9.4. The first three figures are graphs drawn on a Macintosh

computer using Mathematica. The function drawn is given by

1−
[
J0

(
4πA

λ

)]2

(7.242)

(Note that we did not include the reflectivity Ry0 see below for a discussion) at the

amplitudes A = 0.1µm, 1µm, 10µm for Figures 7.9.1, 7.9.2 and 7.9.3 respectively. As a

comparison, the calculated result for a roughness amplitude of 5µm is drawn in Figure

7.9.4. The similarity to Figure 7.9.2 is striking. We see immediately the accuracy of our
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analysis regarding the effect of roughness on the graphs of emissivity verses wavelength.

Small degrees of roughness produce minimal oscillations which decay away rapidly after

the first zero is reached at about 1µm in Figure 7.9.1. An increase in roughness to that of

Figure 7.9.2 stretches out the wavelength region for oscillations until the point λ = 5µm

is reached. Finally Figure 7.9.3 has the highest degree of roughness which oscillates near

ε = 1 for a very long wavelength range. This result, in addition to being very accurate

as a first order solution, also demonstrates that the emissivity is relatively independent of

the reflection coefficient as compared with the roughness characteristics.

As regards the extra terms in the series they will contribute as first order corrections to

solution above. Taking

ρS ' 1
R0

{
R

(0)
0 J0

(
4πA

λ

)
+

R
(2)
0

8

(
2πA

T

)2 [
J0

(
4πA

λ

)
+ J2

(
4πA

λ

)]}
(7.243)

using the fact that

R
(2)
0 = ∓ 2

N2
R0 (7.244)

ρS ' J0

(
4πA

λ

)
+

1
4N2

(
2πA

T

)2 [
J0

(
4πA

λ

)
+ J2

(
4πA

λ

)]
(7.245)

' J0

(
4πA

λ

) [
1 +

1
4N2

(
2πA

T

)2
]

+
1

4N2

(
2πA

T

)2

J2

(
4πA

λ

)
(7.246)

The solution is dominated by the J0 term with the extra J2 being a smaller addition.

J2 has a smaller amplitude and as such has less effect on the result than does the first

term. The extra term in the first expression made up of the ratio 2πA/T acts like the

correlation length as it relates the surface height to the period (gradient). Depending on

the size of this ratio its influence varies accordingly. For large periods the ratio becomes

very small and as expected the smooth case is retrieved. Note that usually we are dealing

with ratios less than 0.2 at the most. Their influence is certainly not negligible but its

effect is reduced due to the squaring of the ratio. We must not neglect the presence of

the refractive index which may effect the solution through its electrical properties and

its temperature dependence. In effect, the extra term is like adding another oscillatory
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function to the original J0 ie

J0

(
4πA

λ

)
+

1
4N2

(
2πA

T

)2

J0

(
4πA

λ

)
(7.247)

the first of these is oscillatory and the second is oscillatory with the same period but differ-

ing amplitude, the result is to effectively increase the size of the oscillations depending on

the size of T . That is, a large T value ensures a small increase in amplitude of oscillation,

a smaller T value, such that the ratio A/T becomes comparable to about 0.3, will signifi-

cantly increase the amplitude of oscillation and delay the decay of the wave generated by

J0. This means the emissivity oscillation for small wavelengths is strong and dies out over

a longer wavelength range. The position at which the solution reverts to the smooth case

is still the same but the amplitude variation is larger and the return to the smooth case is

more gradual. This effect is added to with the addition of J2 which also alters the period

of oscillation. So, the larger the size of A/T the more oscillation is produced. However,

it must be stressed that its effect is nowhere near as significant as the ratio A/λ which to

a good degree of approximation specifies the effect of roughness, and its influence on the

emissivity. So, as already mentioned, the dominant roughness parameter is A/λ with the

extra ratio A/T a secondary influence. This is equivalent to saying the optical roughness

plays a dominating role and the correlation length being an added smaller contribution.

This is supported by the presence of the refractive index which increases with wavelength

therefore decreasing the effect of the second term 1
4N2

(
2πA
T

)2
.

We should also note that since N2 also increases in size with temperature (through con-

ductivity) the temperature effects on a rough surface is small.

7.9.10 Closer Analysis of the second order term 1/4N2(2πA/T )2

The expression for the scattering coefficient

ρS = J0

(
4πA

λ

) [
1 +

1
4N2

(
2πA

T

)2
]
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can be used to find the reflectivity as

Ry = J2
0

(
4πA

λ

)
R0R

∗
0

[
1 +

(
πA

T

)4 1
N2N∗

2

]

Therefore the second term in brackets, which acts as a second order contribution to the

reflectivity, will be significant when

(
πA

T

)4 1
N2N∗

2

≥ 1

this occurs when
A

T
≥ 1

π
(N2N

∗
2 )1/4

where N2 = n2 + iη2, therefore we find

A

T
≥ 1

π
(n2

2 + η2
2)

1/4

Now, from section (2.4.2) we already know that both the real and complex parts of the

refractive index N2 are proportional to
√

σ2λ. Therefore we find

T ≤ πA

(σ2λ)1/4
(A 6= 0)

Now, from the tangent plane criterion we already know that the period, T , is confined by

the inequality

T À
√

πAλ

We can plot two graphs of T verses λ for each of the two inequalities above. Note that

the graph of T = πA/(σ2λ)1/4 represents a family of curves for each particular value of

σ2. This term shifts the point at which the two graphs intersect from left to right as σ

decreases in size. This behaviour can be observed in Figure 7.9.6. The shaded areas in

Figure 7.9.5 represent the respective regions of validity of each inequality. The point of

intersection may be determined by equating the two functions and we obtain

(λi, Ti) =




(
π2A2

σ2

)1/3

,

(
π5A5

σ2

)1/6
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(i ≡ intersectionpoint). The region of intersection we wish to look at lies in the area

defined by

0 < λ ≤ (πA)2/3

σ
1/3
2

The region of validity is the cross hatched area on the left of Figure 7.9.5. This region can

be extended into longer wavelengths by extending the point of intersection. This can be

done by changing the ratio A2/σ2, for example, strong conductors push this point close to

the origin and insulators extend the region to infinity. Since A > 0 and is usually a great

deal less than σ2 the shape of each function is mainly controlled by the conductivity of

the oxide except when the amplitude and conductivity are of the same order. This occurs

when the conductivity is very small, of the order of µ(Ωm)−1.

The different oxides vary in their conductivities a great deal. The conductivity of mag-

netite is very low at small temperatures, eg 200oC, whereas the conductivities of both

haematite and wustite never reach very low values. Wustite maintains a relatively con-

stant conductivity over a range of temperatures, 100-1000oC, of the order of 104 (Ωm)−1.

In that case the region where the second order term becomes significant is a small region

confined close to the origin with small wavelengths and large periods. See Figures 7.9.7

and 7.9.8

This implies that the effect of this second order term is relatively small except at small

wavelengths and lower temperatures. If the oxide is mainly wustite the ratio, A2/σ2, is

always small and the reflectivity is controlled by the optical roughness in the main. The

effects of correlation length should be minimal.



Chapter 8

Oxidised Rough Surfaces

8.1 Introduction

The work of Beckmann has been used in theoretical analyses of surfaces that are not only

rough, but also possess an extra layer of material on top of a substrate. The film interfaces,

film/steel & film/air, are considered rough, [58]. To the authors knowledge, no research

has been carried out dealing with the emissivity of oxidised steel surfaces where the layer

of oxide and the steel surface are treated as roughened. It has always been treated either

as intractable to theoretical approaches or as too time consuming. The impression was one

of, ‘ the work on flat oxidised surfaces was more than adequate for a full understanding

’. Of course, as has been noted earlier the research on rough steel surfaces alone brought

out a considerably number of new aspects.

However, in terms of layered, rough surface scattering, a good deal has been considered.

These aspects are

1. Absorption in the film is included.

2. The boundaries of both the film/air and film/substrate are assumed rough in some

way. Two types are considered, one where both boundaries are identical in profile,

and two, each boundary has a different profile shape.

163
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3. Analytic solutions are not produced.

4. Sinusoidal surfaces are not considered.

5. The treatment is statistical.

This being the case, the method of Ohlidal, [58], is useful for further research on rough

surface emissivity. The new research will consider

1. All the extra aspects considered in the previous two cases. Multilayer flat surface

scattering and rough surface scattering of unoxidised surfaces are included. This

means the electrical properties, the surface roughness, the film layer thickness, in-

terference phenomena, absorption properties and semiconducting characteristics of

iron-oxides are included.

2. Sinusoidal periodic profiles for both boundaries are analysed.

3. The interaction between the film’s electrical properties and thickness are contrasted

to the roughness characteristics of the two boundaries.

4. Interference effects and roughness aspects are analysed.

5. An analytic solution is found.

This problem involves the presence of an iron-oxide film on top of steel. In the following

theoretical construction the film will be assumed periodically rough in the same sense as

the substrate surface itself. This means that each boundary, the first between the sub-

strate and the film, the second the film and air, will possess the same surface undulation.

Both boundaries will then be described by the function, ζ = ζ(x), except that the top

boundary will be raised by the average thickness of the film. This kind of film is often

called an identical film, [58], or a uniform film, [55].

We will follow the work of Ohlidal et al, [58], [59], [60], in the theoretical problem construc-

tion which is based on the scattering theory of Beckmann, used in the previous chapter.
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It is just an extension of the Kirchhoff method.

It should be stated that we will only investigate the structure of identical films and not

look at general thin films, leaving this for future study. Similarly, we will restrict ourselves

to films which cover the substrate uniformly not partially, this aspect has been studied

by, [55].

The chapter structure is as follows. First the basis of the work is considered, the extended

reflection coefficients of single layer films is investigated, including the phase change on

traversing the oxide film. The solution is then found via the very successful technique

of the earlier chapter on rough unoxidised steel surfaces. Finally, its consequences are

analysed with respect to an objects’ emissivity.

8.2 Constraints of the Method

A plane monochromatic EM wave is incident upon a rough steel surface covered in a thin

film of iron-oxide, also rough, both of these media are assumed homogeneous, isotropic

and linear. Both media are assumed to be absorbing through the presence of a complex

refractive index in each material. The electrical properties of the substrate will be assumed

that of iron with conduction effects described by the conductivity, σc3 = σc3(T ), and

the other constants being kept at the free space values ie µ = µ0, ε = ε0. Similarly,

the absorption characteristics of the thin oxide film will be governed by its conductivity

σc2 = σc2(T ), the subscripts {1, 2, 3} increasing from the top down, 1 = air, 2 = iron-oxide,

3 = iron, the other properties assumed identical to free space. Similarly the indices are

given by N1 (air), N2 (oxide) and N3 (iron). The iron-oxide will be taken to be only FeO

this being the dominant layer at high temperatures.

The problem will of course be a scalar diffraction problem with the rough surface one

dimensional so that depolarisation does not enter the analysis. The polarisation will be

considered parallel (‖) and (⊥). The Kirchhoff method assumptions will be used here as

previously, ie
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• The only scattering that takes place will be surface scattering with the possibilities

of internal inhomogeneities in the film not considered.

• Diffraction effects are expected to occur due to the height variations.

• Shadowing and multiple scattering effects will be neglected.

• The scattered field is measured only in the Fraunhofer (far-field) zone of the body

so that the dimensions of the irradiated surface are assumed much larger than the

wavelength (incident radiation), ie

L

r
¿ 1,

kL2

r
¿ 1 (8.1)

although much smaller than the observation distance.

• The Kirchhoff boundary conditions are obeyed on the surface of the scatterer, ie

E(r0) = (1 + R(r0))EI(r0),
∂E(r0)

∂n0
= i[(1−R(r0)](n̂0.kI)EI(r0) (8.2)

These assumptions are of course subject to the tangent plane criterion such that

T À
√

πAλ (8.3)

As in the unoxidised case the scattered field in the Fraunhofer zone is given by

ES(r) =
∫

S
E(r0)

∂G(r, r0)
∂n0

−G(r, r0)
∂E(r0)

∂n0
dS0 (8.4)

which reduces to

ρS = − 1
4LRf0 cos θI

∫ L

−L
(aζ ′ − b)ei(k−x x0+k−z ζ(x0))dx0 (8.5)

the only difference being that the local reflection coefficient is the Fresnel coefficient for a

smooth two layer structure, not just a flat surface. In the above case called Rf indicating

a filmed surface.
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8.2.1 Fresnel Coefficients

This is commonly expressed as

Rf =
r1 + r2e

iδ

1 + r1r2eiδ
(8.6)

where r1 and r2 are the usual Fresnel coefficients at each surface, r1 the air/oxide boundary

and r2 the oxide/iron boundary. The exponential factor represents the effect of thin film

interference in the oxide layer. This is given by, [58]

δ =
(

4π

λ

)
N2d cosϑ cos θt (8.7)

here N2 is now the refractive index of the oxide, d, the film thickness and θt the angle of

refraction just inside the film. The individual Fresnel coefficients are given by

r
‖
1(r0) =

N2 cosϑ1 − cos θt1

N2 cosϑ1 + cos θt1

(8.8)

r⊥1 (r0) =
cosϑ1 −N2 cos θt1

cosϑ1 + N2 cos θt1

(8.9)

where the ”1” subscript indicates the upper (oxide) boundary.

r
‖
2(r0) =

N3 cosϑ2 −N2 cos θt2

N3 cosϑ2 + N2 cos θt2

(8.10)

r⊥2 (r0) =
N3 cosϑ2 −N3 cos θt2

N3 cosϑ2 + N3 cos θt2

(8.11)

ϑi, {i = 1, 2} are the local angles of incidence and angles of refraction at subsequent

interfaces. The refractive indices are, N2, oxide, and N3, iron respectively. Since the

surface slopes are small (tangent plane approximation), then the local angle of incidence,

ϑ2, at the iron interface may be assumed to be approximately the refraction angle from

the oxide interface ie

ϑ2 = θt1 (8.12)

consequently, the angles will be renamed as follows

ϑ1 = ϑ θt1 = θt ϑ2 = θt θt2 = θ
′
t (8.13)



168 CHAPTER 8. OXIDISED ROUGH SURFACES

then the reflection coefficients become

r
‖
1(r0) =

N2 cosϑ− cos θt

N2 cosϑ + cos θt
(8.14)

r⊥1 (r0) =
cosϑ−N2 cos θt

cosϑ + N2 cos θt
(8.15)

r
‖
2(r0) =

N3 cos θt −N2 cos θ
′
t

N3 cos θt + N2 cos θ
′
t

(8.16)

r⊥2 (r0) =
N3 cos θt −N3 cos θ

′
t

N3 cos θt + N3 cos θ
′
t

(8.17)

The refraction angles can be expressed with the aid of Snells law as

sin θt =
1

N2
sinϑ sin θ

′
t =

N2

N3
sin θt (8.18)

or

sin θ
′
t =

1
N3

sinϑ (8.19)

then, expressing the local angles of incidence directly as

ϑ = θI − β (8.20)

where

β = tan−1 ζ ′(x) (8.21)

ζ, the surface profile. Upon substitution of the above simplifications the local Fresnel

coefficients are

r
‖
1(r0) =

N2
2 (cos θI + ζ ′2 sin θI)−

√
(N2

2 − cos2 θI)ζ ′2 + sin 2θIζ ′ + (N2
2 − sin2 θI)

N2
2 (cos θI + ζ ′2 sin θI) +

√
(N2

2 − cos2 θI)ζ ′2 + sin 2θIζ ′ + (N2
2 − sin2 θI)

(8.22)

r⊥1 (r0) =
cos θI + ζ ′2 sin θI −

√
(N2

2 − cos2 θI)ζ ′2 + sin 2θIζ ′ + (N2
2 − sin2 θI)

cos θI + ζ ′2 sin θI +
√

(N2
2 − cos2 θI)ζ ′2 + sin 2θIζ ′ + (N2

2 − sin2 θI)
(8.23)

r
‖
2(r0) =

N2
3

√
(N2

2 − cos2 θI)ζ ′2 − sin 2θIζ ′ + (N2
2 − sin2 θI)

N2
3

√
(N2

2 − cos2 θI)ζ ′2 − sin 2θIζ ′ + (N2
2 − sin2 θI)
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−N2
2

√
(N2

3 − cos2 θI)ζ ′2 − sin 2θIζ ′ + (N2
3 − sin2 θI)

+N2
2

√
(N2

3 − cos2 θI)ζ ′2 − sin 2θIζ ′ + (N2
3 − sin2 θI)

(8.24)

where these equations are one equation with the fraction divided to fit on the page.

r⊥2 (r0) =

√
(N2

2 − cos2 θI)ζ ′2 − sin 2θIζ ′ + (N2
2 − sin2 θI)−

√
(N2

3 − cos2 θI)ζ ′2 − sin 2θIζ ′ + (N2
3 − sin2 θI)√

(N2
2 − cos2 θI)ζ ′2 − sin 2θIζ ′ + (N2

2 − sin2 θI) +
√

(N2
3 − cos2 θI)ζ ′2 − sin 2θIζ ′ + (N2

3 − sin2 θI)
(8.25)

with the further simplification θS = θI = 0 (specular normal incidence)

r
‖
1(r0) =

N2
2 −

√
(N2

2 − 1)ζ ′2 + N2
2

N2
2 +

√
(N2

2 − 1)ζ ′2 + N2
2

(8.26)

r⊥1 (r0) =
1−

√
(N2

2 − 1)ζ ′2 + N2
2

1 +
√

(N2
2 − 1)ζ ′2 + N2

2

(8.27)

r
‖
2(r0) =

N2
3

√
(N2

2 − 1)ζ ′2 + N2
2 −N2

2

√
(N2

3 − 1)ζ ′2 + N2
3

N2
3

√
(N2

2 − 1)ζ ′2 + N2
2 + N2

2

√
(N2

3 − 1)ζ ′2 + N2
3

(8.28)

r⊥2 (r0) =

√
(N2

2 − 1)ζ ′2 + N2
2 −

√
(N2

3 − 1)ζ ′2 + N2
3√

(N2
2 − 1)ζ ′2 + N2

2 +
√

(N2
3 − 1)ζ ′2 + N2

3

(8.29)

for the special cases of a flat surface, ζ = 0, they are

r
‖
10

(r0) =
1−N2

1 + N2
(8.30)

r⊥10
(r0) =

1−N2

1 + N2
(8.31)

r
‖
20

(r0) =
N2

3

√
N2

2 − 1−N2
2

√
N2

3 − 1

N2
3

√
N2

2 − 1 + N2
2

√
N2

3 − 1
(8.32)

r⊥20
(r0) =

√
N2

2 − 1−
√

N2
3 − 1

√
N2

2 − 1 +
√

N2
3 − 1

(8.33)

(where the ”0” subscript indicates a flat surface) so that

Rf0 =
r10 + r20e

iδ0

1 + r10r20e
iδ0

(8.34)
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and δ is

δ =
(

4πd

λ

)
N2

cos θI + ζ ′ sin θI√
1 + ζ ′2

1
N2

√
N2

2 (1 + ζ ′2)− (ζ ′ cos θI − sin θI)2√
1 + ζ ′2

(8.35)

=
(

4πd

λ

) (
cos θI + ζ ′ sin θI

1 + ζ ′2

) √
(N2

2 − sin2 θI) + (N2
2 − cos2 θI)ζ ′2 + sin 2θIζ ′ (8.36)

giving

=
(

4πd

λ

) √
(N2

2 − 1)ζ ′2 + N2
2

1 + ζ ′2
(8.37)

for specular normal incidence of the flat case, ζ ′ = 0

δ0 =
4πN2d

λ
(8.38)

8.3 Solution for Periodically Rough Surfaces

Making the same assumptions as for the unoxidised case the solution of the scattering

problem for periodically rough surfaces having surface profile ζ(x) = A sin 2πx
T is exactly

the same as the unoxidised case except for the replacement of the reflection coefficient

with those above. Therefore, the general solution for an oxidised rough surface with an

identical film of iron-oxide is

ρS =
n + 1

Rf0(n + η)

1∑

m=0

2m∑

j=0

(
2πA

T

)2m R
(2m)
f0

(2m)!
1

22m




2m

j


 J(2m−2j)

(
4πA

λ

)
(η 6= 0) (8.39)

when the edge terms are included and

ρS =
1

Rf0

1∑

m=0

2m∑

j=0

(
2πA

T

)2m R
(2m)
f0

(2m)!
1

22m




2m

j


 J(2m−2j)

(
4πA

λ

)
(η = 0) (8.40)

for a surface an integer multiple of the period. This is of course only valid if the series

containing the derivatives R
(2m)
f0

converges. This will be assumed and not be proved. The

check on this solution will be made through comparison with numerical means.
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This again allows us to approximate the solution up to the first term as

RS ' Rf0J0

(
4πA

λ

)
(8.41)

finally giving the emissivity as

εf ' 1−
[
J0

(
4πA

λ

)]2

Ryf0
(8.42)

where the average reflectivity

Ryf0
=

R
‖
f0

R∗‖
f0

+ R⊥
f0

R∗⊥
f0

2
(8.43)

8.3.1 Consequences of the Oxidised Film Solution

We have already considered the influence of both film thickness and surface roughness

on the emissivity, these effects being propagated by the refractive index of the film, and

the term, eiδ, which produces interference phenomena, and the ratio A/λ (also A/T to

some degree). Now we are interested in which one of these dominates in its effect on the

emissivity. This effect is determined by the product
[
J0

(
4πA

λ

)]2

Ryf0
(8.44)

We have already stated for the unoxidised case that the influence of roughness lasts only

over the range of wavelengths up until the first zero of J0, this remains true in this case

also. After this zero is passed the maximum size of J0 is reached when J0 = 1, the

emissivity is then controlled by the smooth surface single film reflection coefficient Rf0 .

The actual maximum size of the emissivity depends on the refractive index contained in

Ryf0
and the size of J0. Note again the influence of the roughness ends when J0 → 1.

Now both the surface roughness and the interference effects produce oscillations in the

emissivity at small wavelengths. Both become negligible as the wavelength increases. The

first depending on the first zero of J0 and the second on the ratio d/λ. Interference only

occurs when this ratio is close to one. It can be shown that for products of the form

J0

(
4πA

λ

) [
r1 + r2e

2iδ

1 + r1r2e2iδ

]
(8.45)
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• As in part 1 if the ratio d/λ is large enough no matter whether roughness exists

or not, the decaying exponential will dominate the expression giving rise to the

reflection coefficient given in the smooth case

±J0

(
4πA

λ

)
N2 − 1
N2 + 1

(8.46)

the roughness term in front has the effect of causing oscillations even though the

interference oscillations have been eliminated. So, even at small wavelengths we

expect quite strong oscillations due to the strong degree of roughness, A/λ, which

is exhibited by J0 at small wavelengths. These oscillations will take place at quite

large values of emissivity since we are dealing with the reflection coefficient of Scale,

not steel.

• If d/λ ∼ 0 then we get a reflection coefficient approximately that of clean steel (iron)

±J0

(
4πA

λ

)
N3 − 1
N3 + 1

(8.47)

we get behaviour like the rough steel case already discussed.

• If d/λ ∼ O(1) as for the smooth case the term of greatest interest is

J0

(
4πA

λ

)
sin

(
4n2dπ

λ

)
e−

4η2dπ

λ (8.48)

again, for larger ratios of d/λ in the decaying exponential the oscillations produced by

both the sinusoidal and the Bessel function terms will decay away quickly. However

because of the extra J0 term these oscillations may continue longer than expected.

So, instead of decaying away over a thickness range given by the critical value

dcritical =
λC

4η2π
(8.49)

the Bessel function will contribute to stretch out this distance until it reaches its first

zero after which it too will decay away reverting the reflection characteristics back

to the other two functions sin
(

4n2dπ
λ

)
, e−

4η2dπ

λ . If the zero lies further out along the
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wavelength axes than the range of wavelengths needed to reach the critical thickness

then oscillations will continue until this zero is reached. If, on the other hand, the

zero lies inside this region the critical thickness will be reached as controlled by

e−
4η2dπ

λ . Otherwise the critical thickness will be extended.

Observation of the behaviour of the zero order Bessel function shows a pronounced

bump or an area of large width about the first zero, this too shall impose itself on the

other terms above, although its effect will be diminished by the exponential decay

term. Now the first zero is reached at

4πA

λ
= j0,1 (8.50)

that is when λ = λz, where the “z” subscript indicates the wavelength at the first

zero.

λz =
4πA

j0,1
(8.51)

so when we reach λ = λz then dcritical becomes

dcritical =
AC

η2j0,1
(8.52)

then the new distance depends on the roughness through A/η2 which of course is

a function of wavelength. This extension of distance is an amount given by the

difference between the two d’s
∣∣∣∣∣
C(4πA− λj0)

4πη2j0,1

∣∣∣∣∣ (8.53)

• As such, the time for oscillations to cease will be longer. This is, as in part 1, a

direct replacement of dcritical in the expression (3.137).

The general trend, therefore, is for the emissivity to behave in a similar way as to the

smooth case. the differences are that for small thicknesses the behaviour is like the rough

iron case, as the thickness increases oscillations are produced as a combination of rough-

ness and interference effects. They decay out due to absorption where this decay may be
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of a longer duration than in the flat case. After this episode of instability, the appearance

is as of the flat layered case, that is, a relatively constant period where the emissivity

is that of the iron oxide. As the wavelength is increased the roughness and layer effects

diminish and the result is that of pure unlayered unroughened steel.

Note that, at long wavelengths, even though the emissivity of steel is approximated it will

be very small, ε ∼ 0.05 then the measurement of the radiation becomes very difficult be-

cause of its low intensity and very sensitive instruments will be required. In an industrial

environment it is possible the true signal might be swamped by other external noise.

Multilayer films are not considered here but their behaviour is expected to follow quali-

tatively that of the single layer case with the exception that interference only take place

for layers at that particular wavelength and thickness, whereas the roughness contributes

anyway.



Chapter 9

Numerical Solution Scheme for

Rough Surfaces

Calculation via computer of the scattering integral is achieved with the use of a commer-

cially available NAG subroutine specially tailored for the solution of oscillatory integrals.

Even though the scattering integral is not an extreme example of its kind, it was felt

that the use of this routine improves accuracy in the solution rather than using simple

Trapezoidal or Simpson’s rules.

The scattering coefficient, ρ, was calculated from the scattering integral

ρS = − 1
4LR0 cos θI

∫ L

−L
(aζ ′ − b)ei(k−x x0+k−z ζ(x0))dx0 (9.1)

with the reflection coefficients calculated from the term

R =
r1 + r2e

2iδ

1 + r1r2e2iδ
(9.2)

for the layered case (one layer), d 6= 0 and the expressions for the rough unlayered case,

d = 0. The phase difference in interference inside the layer was calculated by

δ =
(

4πd

λ

)
cos θI + ζ ′ sin θI√

1 + ζ ′2

√
N2

2 (1 + ζ ′2)− (ζ ′ cos θI − sin θI)2√
1 + ζ ′2

(9.3)
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As in the theory the surface was considered sinusoidal ζ = A sin
(

2πx
T

)
. The solution

involved the factors, d, average thickness of Scale layer, λ, wavelength of incident radiation,

A, the amplitude of surface corrugations, T o, the temperature of the surface and T the

period of undulations of the surface. That is, after calculation of the reflection coefficient

and the reflectivity the emissivity is

ε = ε(λ, T o; A, T ) (9.4)

9.1 Interpretation and Discussion of Numerical Results :

Unoxidised Surfaces

The variation of emissivity for unoxidised periodically rough surfaces is shown in Figures

9.1.1-9.1.6. All results are obtained at a temperature of T = 1000oC over a wavelength

range of λ : 0.0− 10µm for an unoxidised steel (iron) surface (d = 0). All calculations are

carried out at a surface period of 100µm and integration limits L : 0 → 0.001m. This was

considered more than large enough as a representation of scattering off a rough surface.

This is far in excess of the first few Fresnel zones required to produce accurate results.

The present graphs are evaluated over

max(L)
λ

=
1000µm

10µm
= 100

max(L)
T

=
1000µm

100µm
= 10

therefore many more wavelengths than needed are included and 10 sets of periods are

involved. For each graph the roughness parameter A/λ is increased and the results con-

sidered.

Figure 9.1.1, A = 0.01µm, A
λ : 0.1− 0.001, A

T = 0.0001

As a comparison, the (near) flat case was added. This was actually at an optical roughness

of 0.1 or an amplitude of 0.01µm, a very small surface undulation away from the mean (A

= 0). We see the usual behaviour for a smooth surface. There is a rapid fall in emissivity
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from close to one at small wavelengths to 0.18 at longer wavelengths. The fall is of the

form 1/
√

λ as predicted by theory.

Figure 9.1.2, A = 0.1µm, A
λ : 1− 0.01, A

T = 0.001

The presence of roughness makes itself felt at very small wavelengths 0.1 − 0.8µm. We

expect contributions whenever the roughness parameter is comparable to the wavelength.

There is a typical oscillation until the first zero of J0 is reached this occurs at about

4πA

λ
= 2.405, or when λ = 0.5µm

this is easily seen in the graph. A comparison to Figure 7.9.1 shows the similarity. The

oscillations present in the Mathematica drawn graph are not seen because the resolution

used in the numerical solution is not small enough to extract this information.

Figure 9.1.3, A = 0.5µm, A
λ : 5− 0.05, A

T = 0.005

As expected, the increase in surface amplitude increases the oscillations in the emissivity.

The point at which the solution reverts back to the smooth surface reflection coefficient

is reached at about λ = 2.5µm this lies well within the value given by theory which is

λ = 2.6µm.

• We notice that the smooth surface reflection coefficients don’t actually influence

the result a great deal. It would seem that the earlier assertion, [8], that electrical

properties marginally influence the scattered field is confirmed.

• Note also that on comparison with Figures 4.3.2 and 4.3.3 the graph of emissivity

verses wavelength has the appearance of a filmed surface rather than a rough one.

We may hypothesize that a rough surface is qualitatively equivalent to a smooth

layered surface. A crude estimate would replace the rough surface as a single layer

of oxide on steel with film thickness obtained by consideration of surface roughness.

Since both surface roughness amplitude and film thickness induce oscillations when
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they are of the same order as the wavelength we are led to the conclusion that a

rough surface is equivalent to a filmed surface having, in the case of Figure 9.1.3, a

thickness equal to about 1µm.

• Since the ratio (2πA/T )2 = 0.001 is quite small, it is reasonable to assume that the

influence of second order terms, which are always multiplied by this ratio, is very

small indeed. In fact, this means that the representation of rough surface emissivity,

as a function only of the ratio 4πA/λ, is adequate provided the ratio A/T is always

relatively small.

Figure 9.1.4, A = 1µm, A
λ : 10− 0.1, A

T = 0.01

This graph illustrates the same behaviour as the previous figure. Again oscillations cease

at about λ = 5.5µm this is close to the theoretical value of 5µm. It is now possible that

the reflection coefficients play some part in the location of the points where oscillations

decay away. The small discrepancy between theory and numerical solution may be due to

the influence of the reflectivity multiplier. We may probably discount the effect of 2πA/T

as compared to the effect the smooth surface reflectivity has. Also, we again obtain an

equivalent film thickness of about 2− 3µm.

Figure 9.1.5 and 9.1.6, A = 5− 10µm, A
λ : 50, 100− 0.5, 1, A

T = 0.05, 0.1

These graphs are merely extensions of the earlier ones demonstrating the oscillatory be-

haviour for large roughness parameters. Compare these results with Figure 7.9.3 (A =

10µm). The two graphs are almost identical, once again showing that at high degrees of

optical roughness the ratio 4πA/λ is the most important parameter describing emissivity

characteristics.

9.1.1 Conclusions

We arrive at the following conclusions
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1. Rough unoxidised surfaces act like a smooth oxidised surface with equivalent layer

thickness determined by the roughness parameter.

2. The emissivity characteristics of unoxidised rough surfaces are governed by the op-

tical roughness parameter in the main. The influence of electrical properties is

relatively insignificant until the first zero of J0 is reached. After this point the emis-

sivity is controlled by the smooth surface reflectivity. The effect of the second order

roughness parameter, 2πA/T , is usually very small although if it is of a significant

size it may effect results. The effect of this parameter has so far not been very

pronounced.

3. The roughness of a surface significantly increases the emissivity in the same sense

that an oxidised smooth surface does through the refractive index of the oxide layer.

4. The effect of roughness on emissivity properties is most significant when the surface

amplitude, A, is comparable to the wavelength used in the measurement.

5. Since the emissivity behaviour of rough surfaces is controlled by the smooth surface

reflectivity when the wavelength exceeds 4πA/j0,1, then the emissivity must even-

tually tend to that of the smooth case. If the roughness parameter is small enough

the entire behaviour is governed by the smooth reflectivity.

9.2 Interpretation and Discussion of Numerical Results :

Oxidised Surfaces

The Figures 9.2.1-9.2.32 are organised as follows :

1. Figures 9.2.1-9.2.10 are graphs of emissivity verses thickness of oxide layer, demon-

strating the effect of roughness for oxidised and unoxidised surfaces. A comparison

is made between the effects of roughness increase and layer thickness increase.
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2. Figures 9.2.11-9.2.32 are graphs of emissivity verses wavelength of measurement

radiation for oxidised and unoxidised surfaces.

Each of the two sets of graphs considers various ranges of the other constant parameters

: wavelength in 1. and thickness in 2. above.

All graphs are taken over a surface period of T = 100µm and at T o = 1000oC.

Figures 9.2.1-9.2.2, A = 0, 0.05µm, λ = 0.5µm, d : 0− 2µm

These two graphs compare how small degrees of roughness change the emissivity of filmed

surfaces. The first graph, Figure 9.2.1, is a typical graph of emissivity verses film thickness

extending from zero to 2µm with zero roughness, the second applies a roughness amplitude

of A = 0.05µm. That is

A

λ
= 0.1 max

(
A

d

)
= 0.0025

A

T
= 0.0005

We see immediately that, as expected, the emissivity is increased even for very small rough-

ness parameters. This has the effect of decreasing the amplitude of interference oscillations

at small wavelengths (this of course being the property of smooth oxidised surfaces). No-

tice that there is no net increase in the final converged value of emissivity which remains

constant over the latter part of the graph at 0.99 or so. The number of peaks and troughs

remains constant and the period of oscillation is also not changed. However, the smooth

surface graph rises from the initial real emissivity of iron, ε = 0.43 at λ = 0.5µm, d = 0m,

whereas the rough graph never even starts from this point, commencing instead, from an

emissivity of 0.77. At no time can we say the rough oxidised graph obtains the emissivity

of steel itself.

Figures 9.2.3-9.2.5, A = 0, 0.01, 0.03µm, λ = 0.1µm, d : 0− 2µm

This time we considered the same situation as the previous graphs except for a smaller

range of wavelengths. The original graph, Figure 9.2.3, has interference oscillations about



9.2. INTERPRETATION AND DISCUSSION OF NUMERICAL RESULTS : OXIDISED SURFACES181

the mean emissivity curve not as in the previous curves where the oscillations dominated

the graph. We have for Figure 9.2.3

A

λ
= 0.1 max

(
A

d

)
= 0.0005

A

T
= 0.0001

For Figure 9.2.4

A

λ
= 0.3 max

(
A

d

)
= 0.0015

A

T
= 0.0003

The same behaviour as in Figures 9.2.1-9.2.2 is noticed again even for very small ratios

of surface amplitude to thickness. The behaviour seems to be solely controlled by the

optical roughness ratio. We may discount the effect of second order roughness parameters

as these are very small (2πA/T )2 = 3.5× 10−6.

Figures 9.2.6-9.2.10, A = 0, 0.5, 1, 3, 5µm, λ = 10µm, d : 0− 2µm

This time we study emissivity behaviour at longer wavelengths starting again from the

smooth surface oxidised case and proceeding through larger and larger roughness ratios.

For example we start from, Figure 9.2.7 :

A

λ
= 0.05 max

(
A

d

)
= 0.025

A

T
= 0.005

to Figure 9.2.10 :

A

λ
= 0.5 max

(
A

d

)
= 0.25

A

T
= 0.05

Note that this time the effects of second order roughness parameters may not be so small.

This time the ratio of surface amplitude to depth of oxide film is no longer small. In

Figure 9.2.10 we see that at large roughness parameters the initially small emissivity in

earlier graphs, Figures 9.2.6, 9.2.7 is completely eliminated and there is a flattening out of

the graph until almost a constant emissivity is obtained over all film thicknesses, whether

small (near zero) or large 2µm. This time, we also notice a large increase in the converged

emissivity from about 0.64 (Figure 9.21.6) to 0.98 (Figure 9.2.10). We must attribute this
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increase to, first, higher degrees of optical roughness and, second, to the possible influence

of second order roughness. This time the difference in size of A/λ and A/T is only 1 order

of magnitude rather than 3 or 2.

Figures 9.2.11-9.2.18, A = 0µm, d = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 5µm, λ : 0.03− 3µm

These graphs demonstrate the change in emissivity over wavelength as the thickness of

the oxide layer (single-layer of FeO) is varied from zero up to 5µm. They are included for

comparison with the corresponding rough cases to be studied forthwith.

Figures 9.2.19-9.2.24, A = 0, 0.01, 0.02, 0.08, 0.1, 0.2µm, d = 0.4µm, λ : 0.03− 3µm

These graphs start from Figure 9.2.19 with a thickness of 0.4µm and zero roughness, that

is, a graph chosen from the previous set : Figure 9.2.15. The graphs progress as follows :

A

λ
= 0 0.33− 0.003 0.66− 0.0066 2.66− 0.0266 3.3.3− 0.033 6.66− 0.066

A

d
= 0, 0.025, 0.05, 0.2, 0.25, 0.5

A

T
= 0, 0.0001, 0.0002, 0.0008, 0.001, 0.002

for each Figure, 9.2.11-9.2.18, in increasing order. We should also note the point at which

roughness oscillations cease these occur at λ = 4πA/j0,1, for each graph they are

λ = 0.05, 0.1, 0.42, 0.52, 1.04µm

We first note that until we reach a surface amplitude of A = 0.08µm (Figure 9.2.22)

there is virtually no change in the behaviour of the emissivity. This is due to the fact

that the oscillations, due to roughness, decay away much earlier than do the interference

oscillations, until the surface amplitude reaches 0.08µm. At this stage the oscillatory

contributions from both interference and roughness factors seem to be of the same order

and in fact cancel each other out giving the approximate straight line in the early part

of Figure 9.2.22. The rest of the graph then behaves according to interference theory
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described in section (3.3.2) and equation (3.137). Beyond this optical roughness value

the surface undulation continues to increase the emissivity and eliminates all but one

oscillation. The first zero of J0 shifts further towards the right of the graphs causing this

extended behaviour.

Figures 9.2.25-9.2.28, A = 0, 0.5, 1, 2µm, d = 10µm, λ : 0.1− 10µm

The next set of graphs start with zero surface amplitude at d = 10µm and increase the

roughness progressively up to A = 2µm. The various parameters are

A

λ
= 0, 5− 0.05, 10− 1, 20− 2

A

d
= 0, 0.05, 0.1, 0.2

A

T
= 0, 0.005, 0.01, 0.02

λcrit = 2.6, 5.2, 10.4µm

Note that the optical roughness is now much larger than in previous graphs. This is why

we see an immediate increase in emissivity as soon as the surface amplitude is increased

to 0.5µm. The behaviour is very similar to that of previous graphs with the last one

extending emissivity oscillations just past the endpoint, 10µm. Note the presence of extra

oscillations induced by the roughness. This was not present in the original graph, Figure

9.2.25, which had passed the point where interference oscillations take place.

Figures 9.2.29-9.2.32, A = 0, 0.2, 0.3, 0.5µm, d = 1µm, λ : 0.1− 10µm

The next set of graphs start with zero surface amplitude at d = 1µm and increase the

roughness progressively up to A = 0.5µm. The various parameters are

A

λ
= 0, 2− 0.02, 3− 0.03, 5− 0.05

A

d
= 0, 0.2, 0.3, 0.5
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A

T
= 0, 0.002, 0.003, 0.005

λcrit = 1, 1.6, 2.6µm

There is no relevant change in behaviour from earlier graphs. These graphs were included

in order to observe how emissivity changed if the interference region had been bypassed.

All previous explanations are confirmed in these set of graphs.

9.3 Conclusions

As regards oxidised rough surfaces it is reasonable to state that :

1. As for smooth oxidised surfaces, oxidised rough surfaces undergo a significant in-

crease in emissivity due not only to the interference phenomena but also the rough-

ness considerations. These two effects combine to increase the emissivity of real

(rough, oxidised) surfaces to such an extent that at no time other than at very long

wavelengths does the emissivity approach that of steel.

2. The effect of surface roughness, A/λ, can be confined to three regions of interest for

oxidised surfaces :

• when roughness, A/λ, is smaller than interference, d/λ.

• when roughness and thickness factors are comparable, A/λ ∼ d/λ.

• when roughness, A/λ, is greater than interference, d/λ.

The first case shows that interference effects dominate with almost no contribution

from surface roughness. This is expected as long as A/λ is small and A/d is of order

one. So a relatively smooth oxidised surface has the characteristics of smooth layered

surfaces and so is governed by the optical laws used for smooth layered media. That

is the surface is oxidised but not rough.

The second case allows an interaction between both phenomena often resulting in a

very high emissivity that remains constant over a large range of wavelengths.



9.3. CONCLUSIONS 185

The third case is dominated by the roughness parameter, A/λ, which accounts for

oscillation effects and the general behaviour. However the presence of the oxide

layer contributes by the initial raising of the emissivity and forming the basis for

the addition of the roughness properties. In other words, the roughness effects are

added on top of the original smooth surface oxide effects.

9.3.1 Summary

In reality we are always presented with a steel surface that is rough and is covered by

three separate layers of iron-oxide. However, in industry, the simplest possible model is

both financially and time-wise preferable to any complex simulation representing the ‘real’

situation. Similarly, it makes sense to use a simple model because its inherent simplicity

allows much greater physical comprehension, rather than an involved model where the

effects of relevant properties can not be eassily extracted.

Upon consideration of the conclusions drawn about the various models studied, we find

that

1. The more accurate three-layer model of smooth surface emissivity variation can

under appropriate conditions be simplified to a single-layer model of oxide on steel.

This is true provided the wavelength of measurement is larger than the thickness of

FeO.

2. The case of a rough unoxidised steel surface can be approximated by a single

smooth layer of a material whose thickness is determined by the roughness param-

eter 4πA/λ and whose refractive index may be extracted by consideration of the

function J0(4πA/λ).

3. An oxidised surface with substrate/oxide and oxide/air boundaries having identical

surface roughness may be approximated as two flat (smooth) layers upon an iron

substrate. The first layer is the smooth layer of oxide and the second layer represents

the roughness properties of both boundaries.
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9.4 Future Directions in Research

There are several avenues of research to follow :

1. The obvious first step is to extenmd the analysis in a straightforward manner to

deal with the full three-layer problem. This of course makes the simulation more

realistic.

2. Firstly, the last conclusion above leads to the possibility of considering all rough

oxidised surfaces as simply two smooth layers on a steel substrate. It would then be

possible to model all such surfaces in this way and lead to considerable simplification

for realistic emissivity simulation.

For example, we would contend with three simple cases. The first of these deals with

a thick oxide layer and a thin layer on top of the oxide representing the roughness

properties. We expect some slight variations in behaviour from a pure single-layer

of oxide on steel, but in the main, the behaviour would be described by interference

theory due to the oxide layer only. The second case occurs where the oxide layer

and roughness layer are both contributing equally, they are of similar thickness, or

rather, both interact with the incident wavelength to produce combined two layer

behaviour. The last case involves mainly the upper layer with only a thin oxide layer

underneath. The properties are then governed by this layer in the main.

Other possibilities are that both layers are very thin corresponding to minimal rough-

ness and little oxidation. As it is this two layer model should be investigated for its

validity and use in modelling real surfaces reliably.

3. The previous work on rough surfaces may be extended to surfaces rough in both x

and y directions rather than just the x direction used currently. Two possibilities

arise, first, if the new 2-D surface does not induce depolarisation upon scattering

the extension to 2-D surfaces is straightforward application of the theory discussed

in this thesis. Second, if depolarisation does take place then the scattering problem
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must be constructed as a vector theory rather than as a scalar theory which is used

in this thesis.

4. Consideration of surface shadowing is possible with the inclusion of shadowing func-

tions, [8]. This would improve the accuracy of Kirchhoff theory.

5. It is possible to extend Kirchhoff theory to fractal surfaces and periodic surfaces

having more than one scale of roughness. This extension is not difficult and in the

case of periodic functions could lead to very generalised solutions which may be

obtainable in closed form.

6. Other effects, such as multiple scattering, and any extension away from the Kirchhoff

assumptions require a new theory such as integral equation methods or the partial

differential equation solution of the original scattering problem.



188 CHAPTER 9. NUMERICAL SOLUTION SCHEME FOR ROUGH SURFACES



Appendix A

A.1 Derivatives of odd and even functions

Given an odd function

ζ(−x) = −ζ(x) (A.1)

then it is relatively straightforward to show that the derivative of this function must be

even. Define the derivative of a function ζ(x) as at some point x by

ζ ′(x) = lim
h→0

ζ(x + h)− ζ(x)
h

(A.2)

for an odd function

ζ ′(−x) = lim
h→0

ζ(−x + h)− ζ(−x)
h

(A.3)

= lim
h→0

−ζ(x− h) + ζ(x)
h

(A.4)

= − lim
h→0

ζ(x− h)− ζ(x)
h

(A.5)

= − lim
−h→0

ζ(x + h)− ζ(x)
−h

(A.6)

= lim
h→0

ζ(x + h)− ζ(x)
h

(A.7)

= ζ ′(x) (A.8)

so the derivative of an odd function is an even function. Similarly it is easily shown that

if ζ is even

ζ ′(−x) = −ζ ′(x) (A.9)

189
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or the derivative of an even function is odd. In fact it is also possible to show that generally

for

• ζ odd ie ζ(−x) = −ζ(x)

ζ ′(−x) = ζ ′(x), ζ2(−x) = −ζ(2)(x), ζ(3)(−x) = ζ(3)(x), ... (A.10)

or

ζ(2n+1)(−x) = ζ(2n+1)(x) (A.11)

ζ(2n)(−x) = −ζ(2n)(x) (A.12)

n an integer

• ζ even ie ζ(−x) = ζ(x)

ζ ′(−x) = −ζ ′(x), ζ(2)(−x) = ζ(2)(x), ζ(3)(−x) = −ζ(3)(x), ... (A.13)

or

ζ(2n+1)(−x) = −ζ(2n+1)(x) (A.14)

ζ(2n)(−x) = ζ(2n)(x) (A.15)

n an integer

A.2 Derivatives of Reflection Coefficients

Perpendicular Polarisation

The derivatives of the reflection coefficients of a rough surface with incident radiation at

normal incidence are given by

R
(2)
0 =

d2R

dζ ′2

∣∣∣∣∣
ζ′=0

=
(1−N2)(1−N)

2N(1 + N)2
+

1−N2

2N(1 + N)2
(A.16)

R
(4)
0 =

(N2 − 1)2(1−N)
2N2(1 + N)3

+
(N2 − 1)2

2N2(1 + N)2
+

(N2 − 1)2(1−N)
4N3(1 + N)2

+
(N2 − 1)2

4N3(1 + N)
(A.17)
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R
(6)
0 =

−3(N2 − 1)3(1−N)
4N3(1 + N)4

− 3(N2 − 1)3

4N3(1 + N)3
−3(N2 − 1)3(1−N)

4N4(1 + N)3
− 3(N2 − 1)3

4N4(1 + N)2
−3(N2 − 1)3(1−N)

8N5(1 + N)2
−

3(N2 − 1)3

8N5(1 + N)
(A.18)

R
(8)
0 =

3(N2 − 1)(1−N)
2N4(1 + N)5

+
3(N2 − 1)4

2N4(1 + N)4
+

9(N2 − 1)4(1−N)
4N5(1 + N)4

+
15(N2 − 1)4

8N6(1 + N)3
+

15(N2 − 1)4

8N6(1 + N)2
+

15(N2 − 1)4(1−N)
16N7(1 + N)2

+
15(N2 − 1)4

16N7(1 + N)
(A.19)

R
(10)
0 =

−15(N2 − 1)5(1−N)
4N5(1 + N)6

− 15(N2 − 1)5

4N5(1 + N)5
− 15(N2 − 1)5(1−N)

2N6(1 + N)5
− 15(N2 − 1)5

2N6(1 + N)4
−

135(N2 − 1)5(1−N)
16N7(1 + N)4

− 135(N2 − 1)5

16N7(1 + N)3
− 105(N2 − 1)5(1−N)

16N8(1 + N)3
− 105(N2 − 1)5

16N8(1 + N)2
−

105(N2 − 1)5(1−N)
32N9(1 + N)2

− 105(N2 − 1)5

32N9(1 + N)
(A.20)

R
(12)
0 =

45(N2 − 1)6(1−N)
4N6(1 + N)7

+
45(N2 − 1)6

4N6(1 + N)6
+

225(N2 − 1)6(1−N)
8N7(1 + N)6

+
225(N2 − 1)6

8N7(1 + N)5
+

315(N2 − 1)6(1−N)
8N8(1 + N)5

+
315(N2 − 1)6

8N8(1 + N)4
+

315(N2 − 1)6(1−N)
8N9(1 + N)4

+
315(N2 − 1)6

8N9(1 + N)3
+

945(N2 − 1)6(1−N)
32N10(1 + N)3

+
945(N2 − 1)6

32N10(1 + N)2
+

945(N2 − 1)6(1−N)
64N11(1 + N)2

+
945(N2 − 1)6

64N11(1 + N)
(A.21)

for perpendicular polarisation. The largest terms in each of the derivatives R
(2m)
0 form

the basis for an analysis of the convergence of the total series, (7.184). For example, the

largest terms in the 10th and 12th derivatives are given by :

135(N2 − 1)5

16N7(N + 1)3
315(N2 − 1)6

8N9(1 + N)3
(A.22)

this is true provided |N | ≥ 1 (N complex), this being a refractive index for which the

minimum value is 1, that of free space, and the maximum, infinite, a perfect conductor.

Any materials of refractive indices less than 1 are unphysical for the current problem. It is

difficult to generate the 2mth largest term, such as the two above, in a consistent formula.

However it is relatively easy to find the 2mth term for the last term in each series above.

For example the last terms for the 10th and 12th derivatives are :

945(N2 − 1)6

64N11(1 + N)
105(N2 − 1)5

32N9(1 + N)
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(2m− 3)!
2m−22m(m− 2)!

(
(N2 − 1)m

N2m−1(1 + N)

)
(A.23)

for example the substitution of m = 6 reproduces the last term in R
(12)
0 . Now, it is possible

to construct a series such as the ones we are dealing with by taking the generator of the

last term, which we know, and make this the largest term of the series merely by altering

the denominator so that the largest term now reads

(2m− 3)!
2m−22m−2(m− 2)!

(
(N2 − 1)m

N2m−3(1 + N)m−3

)
(A.24)

the new term for m = 6 now becomes

(9)!
2424(4)!

(
(N2 − 1)6

N9(1 + N)3

)
=

945(N2 − 1)6

16N9(1 + N)3
(A.25)

which is now larger than the previous equivalent largest term 315(N2−1)6

8N9(1+N)3
. It is then possible

to generate the largest term for each series above so that this new series, which must be

larger than the previous one, can be used to test the convergence of the earlier one. If this

new series converges then so must the previous one since it is the larger of the two, [75].

Now, since the largest term is larger than any other of the terms in the series for R
(2m)
0

above, then for any of the other terms in the series

1st term < largest, 2nd term < largest, ..., largest term ≤ largest (A.26)

and so on up to the last term. Now, in each series there are always 2m terms so adding

all terms

1st + 2nd + 3rd + . . . + largest < 2m× largest (A.27)

therefore, we may propose that the 2m× the largest term can represent each series for

each R
(2m)
0 above. Then the approximate 2mth term of each derivative is

∼ (2m)(2m− 3)!
2m−22m−2(m− 2)!

(
(N2 − 1)m

N2m−3(1 + N)3

)
(A.28)
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Parallel Polarisation

For parallel polarisation the 2mth term changes only as regards the presence of a higher

power of n in the denominator. For example, the previous largest term for perpendicular

polarisation was given by
315(N2 − 1)6

8N9(1 + N)3
(A.29)

whereas the one for parallel polarisation is

315(N2 − 1)6

8N12(1 + N)3
(A.30)

this merely changes the new general 2mth term from that above to

∼ (2m)(2m− 3)!
2m−22m−2(m− 2)!

(
(N2 − 1)m

N2m(1 + N)3

)
(A.31)

A.3 Properties of Bessel Functions

The Bessel function of the first kind of order m is defined by the series

Jm(x) =
∞∑

s=0

(−1)s

s!(m + s)!

(
x

2

)m+2s

≡
(

1
2
x

)m ∞∑

s=0

(−1
4x2)s

s!Γ(m + s + 1)
(A.32)

For integer m

Jm(x) = (−1)mJ−m(x) (A.33)

now for m = 0 from above

(−1)0J−0(x) = J0(x) (A.34)

and for x negative comparison with the series above with m = 0 gives

J0(−x) = J0(x) (A.35)

in fact for m even

J2m(−x) = J2m(x) (A.36)

and using the representation for m integral

Jm(x) =
1
π

∫ π

0
cos(x sin θ −mθ)dθ (A.37)
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J−2m(−x) =
1
π

∫ π

0
cos(−x sin θ − (−2m)θ)dθ (A.38)

since

cos(−x sin θ − (−2m)θ) = cos[−(x sin θ − 2mθ)] = cos(x sin θ − 2mθ) (A.39)

therefore
1
π

∫ π

0
cos(−x sin θ − (−2m)θ)dθ =

1
π

∫ π

0
cos(x sin θ − 2mθ)dθ (A.40)

or

J−2m(−x) = J2m(x) (A.41)

we will also use the results

Jm(x) =
1
2π

∫ θ+2π

θ
ei(x sin t−mt)dt (A.42)

imJm(x) =
1
2π

∫ θ+2π

θ
ei(x cos t+mt)dt (A.43)

(−1)mJm(x) =
1
2π

∫ θ+2π

θ
ei(x sin t+mt)dt (A.44)

Asymptotic Expansions

Note that for two extremes the Bessel function J0(x) has two asymptotic expansions. For

the case where

x → 0 (A.45)

the zero order Bessel function of the first kind Jm has the expansion for m ≥ 0

Jm(x) ∼ (1
2x)m

Γ(m + 1)
(A.46)

on the other hand when

|x| → ∞ (A.47)

Jm(x) ∼
√

2
πx

cos
(

x− mπ

2
− π

4

)
(A.48)
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so

lim
x→0

J0(x) = 1, lim
|x|→∞

J0(x) =
√

2
πx

cos
(

x− π

4

)
(A.49)

Note that for large order

lim
m→∞Jm(x) ∼ −

√
2

πm

(
ex

2m

)m

(A.50)

obviously if x is finite the result approaches zero.

Zeros of Bessel Functions

The Bessel Function of integer order all have an infinite number of zeros. The first few

zeros of the zero order Bessel function of the first kind are designated j0,i, that is, the zero

subscript representing the zero order Bessel function and the i representing the ith zero.

The first few zeros are

j0,1 = 2.40482 (A.51)

j0,2 = 5.52007 (A.52)

j0,3 = 8.65372 (A.53)

All information was obtained from, [1] and, [95].

A.4 Tangent Plane Criterion

According to Ogilvy, [57], Beckmann & Spizzichino, [8], Bass & Fuks, [6] and originally

Brekhovskikh, [17], the Kirchhoff method is only valid provided the radius of curvature of

each scattering element is small compared with the incident wavelength that is

4πrc cosϑ À λ (A.54)

Another often quoted result, [57], is the condition

(
krc

2

) 1
3

cosϑ À 1 (A.55)
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This is the less strict condition for local angles of incidence not too near grazing incidence.

The extra, stricter condition can be stated, [17], as

1
cosϑ

λ2

6
d

dx

(
1
rc

)
¿ 1 (A.56)

Now, for sinusoidal surfaces such as the one used in our calculations, that is

ζ = A sin
(

2πx

T

)
, ζ ′ =

2πA

T
cos

(
2πx

T

)
, ζ” = −4π2A

T 2
sin

(
2πx

T

)
(A.57)

defining the radius of curvature as

rc =
(1 + ζ ′2)

3
2

|ζ”| (A.58)

then, since ϑ = θI − tan−1 ζ ′, we may calculate for the condition above

4π(1 + ζ ′2)
3
2

|ζ”| cos(θI − tan−1 ζ ′) À λ (A.59)

or using the fact that

cosϑ =
cos θI + ζ ′ sin θI√

1 + ζ ′2
(A.60)

for angles of incidence at the normal, θI = 0

4π(1 + ζ ′2)
3
2

|ζ”|
1√

1 + ζ ′2
À λ (A.61)

=
4π(1 + ζ ′2)

|ζ”| (A.62)

substituting for ζ ′

=
T 2(1 +

(
2πA
T

)2
cos2

(
2πx
T

)
)

Aπ| sin
(

2πx
T

)
|

(A.63)

this must be equally true when the minimum value of this function is much greater than

λ. The minimum occurs when the sine term is 1 and the cosine 0. That is when

sin
(

2πx

T

)
= 1 (A.64)

or

x =
T

4
(A.65)
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then the condition reads
T 2

πA
À λ (A.66)

or

T À
√

πAλ (A.67)

the period must be much larger than amplitude multiplied by the wavelength. For an

example, consider the values A = 1µm and a wavelength of the same order λ = 1µm.

Then we find

T À
√

π × 10−12 =
√

π × 10−6 ' 1µm (A.68)

since our range of amplitudes will be much lower than this value periods of the order of

100 µm are more than adequate. For arbitrary angles of incidence θI 6= 0 we find

T À
√

πAλ sec θI (A.69)

valid provided θI 6= π/2, this restriction is also used to avoid surface shadowing and

multiple scattering, [8].

Now as regards the stricter condition

1
cosϑ

λ2

6
d

dx

(
1
rc

)
¿ 1 (A.70)

It has been shown, [8], [17], that this condition is satisfied for sinusoidal surfaces when

λ2A

T 3
¿ cos θI (A.71)

or
λ2A

T 3
¿ cos θI + ζ ′ sin θI√

1 + ζ ′2
(A.72)

This condition will be most critical at the points of inflection of the function, ζ =

A sin
(

2πx
T

)
, these occur at 2πx/T = mπ, m integer. Then cosmπ = (−1)m and we

have
λ2A

T 3
¿ cos θI + (−1)m 2πA

T sin θI√
1 +

(
2πA
T

)2
(A.73)
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for θI = 0

λ2 ¿ T 4

A
√

T 2 + 4π2A2
(A.74)

or

4π2λ4A4 + T 2λ4A2 − T 8 ¿ 0 (A.75)

a quadratic in A with solutions

A2 =
T 2

8π2λ2
(−λ2 ±

√
λ4 + 16π2T 4) (A.76)

then since A ≥ 0, T > 0, λ > 0 we must choose the positive square root. Therefore

A2 =
T 2

8π2λ2
(
√

λ4 + 16π2T 4 − λ2) (A.77)

rearranging this becomes

A2 =
T 2

8π2λ2


4πT 2

√(
λ2

4πT 2

)2

+ 1− λ2


 (A.78)

=
T 4

2πλ2




√(
λ2

4πT 2

)2

+ 1−
(

λ

2
√

πT

)2

 (A.79)

note that the squared term in brackets is usually much smaller than 1, this is the case if

λ4

16π2T 4
¿ 1 (A.80)

or

T À λ

2
√

π
(A.81)

this is often the case, if for example λ = 1µm, then T À 0.4µm approximately. If this is

so

A2 ¿ T 4

2πλ2
(A.82)

approximately. This means

T À (2π)
1
4

√
Aλ (A.83)

a very similar condition to the previous one. There is little difference and the top one

will be used. The above conditions form the criteria which determine at least to a partial

extent the accuracy of the Kirchhoff method and its applicability in our surface profile.
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