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ABSTRACT. This paper investigates the heat transfer from a hot moving steel strip impinged
by a laminar water-jet in the vicinity of the stagnation point with simulated film-boiling regions
on either side. A two-dimensional Eulerian-Lagrangian method, in conjunction with a semi-
analytical approach for large temperature gradients, has been shown to successfully solve the
heat conduction equations with both advective and diffusive components. The study shows
that under the impingement of the water jet the strip temperature at the stagnation point
is initially depressed and subsequently rebounds strongly towards a steady state. The heat
extracted by the water jet increases with increasing convective acceleration of the jet.

INTRODUCTION

Ever-increasing demand from the automotive and building industries on sheet steel quality
require steel strip to be tough, ductile, fatigue resistant, weldable and corrosion resistant [1].
These properties are achieved, in addition to other initiatives, by tight control of the finishing
and coiling temperatures [2], the latter of which is achieved by precise control of the cooling at
the run-out-table (ROT). Design of the ROT is governed by the considerations of high cooling
efficiency and achieving the desired steel properties. Planar jets (water curtains) provide very
high cooling efficiency with minimum splashing [4], but they produce non-uniform cooling on
the top and bottom surface as well as over the length of the cooling zone. Spray cooling has a
low specific cooling performance, and incurs high maintenance costs [1]. A compromise between
high specific cooling performance and uniform strip cooling is provided by an array of round
laminar jets impinging on the steel sheet. Although limited experimental studies of round jet
arrays have been conducted [1], the heat transfer characteristics of single laminar jets impinging
on a hot moving sheet have not yet been fully investigated.

Cooling of the strip, typically in excess of 800°C, leads to boiling heat transfer characterised by
forced convection, nucleate boiling, transition boiling and film-boiling regimes. In stationary
strip jet-impingement (non-moving sheet), these boiling regimes are present simultaneously at
differing distances as measured from the jet impingement centre-line, see Figure 1(a). The
thermal zones for jet impingement may be delineated into a free-jet region, where the velocity
and temperature distributions of the jet are not affected by the presence of the strip surface;
a jet-impingement or stagnation region, where single-phase forced convection takes place over
several jet widths and the cooling effectiveness is high [1,4]; and the wall-jet region, separated
into a small region of transition and nucleate boiling before entering the parallel film-boiling
region separating the strip surface from the jet by a vapour layer which reduces cooling effec-
tiveness considerably. This region may span fifty jet widths from the jet centre-line [1] with
the velocity becoming distance dependent.
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Figure 1. Thermal zones (a) and (b) computational domain of the water-jet cooling of a hot
moving strip.

Although the strip surface temperatures in the stagnation region exceed the minimum film-
boiling temperature it has been shown that the jet momentum and a high degree of water-
jet sub-cooling inhibits the formation of a vapour layer, thus allowing wetting of the strip
surface [4]. The darkening of the red-hot surface (steel at 1000°C') in the impingement region,
which only occurs below 500°C, confirms this assumption [3]. In addition, high measured heat
transfer rates [5] and high speed photography of jet impact on a hot surface (Figure 2) show
direct contact (see Soh and Yuen [2]) and a suppression of both the thermal and hydrodynamic
boundary layers within one jet width of the stagnation region [6]. Consequently, higher jet
impact velocities are expected to intensify local heat transfer [6].

(a) (c)
Figure 2. Photographs showing contact between a water-jet striking a plate initially heated to
900°C": (a) just before the impact, (b) 2 ms and (c¢) 5 ms after impact of the jet. No boiling
was observed in this duration.

For moving strip impingement boiling, viscous forces will elongate the impingement zone in
the direction of motion thereby enhancing heat transfer downstream of the stagnation point
(SP) and reducing it upstream [1]. Computations have shown that the cross-sectional strip



isotherms are also stretched downstream [2]. If the strip speed exceeds that of the impacting
fluid, it significantly influences heat transfer in the film-boiling regime even in the case of high
water sub-cooling [4]. However, in order to simplify the calculations in this paper, and in line
with previous work [2], it will be assumed that the hydrodynamic boundary layer around the
SP is extremely thin.

Due to both fluid flow and strip movement, the water-jet impingement cooling of a hot strip
involves the solution of transport equations under certain initial and boundary /interface condi-
tions. Limitations in the analytical solutions of such equations demand a numerical approach.
Traditional Eulerian finite difference methods for the solution of such advection equations incur
severe Courant number stability restrictions and Peclet number induced spurious oscillations
[8] which are not improved by upwinding methods (e.g. Quy et al. [9]). Purely Lagrangian
methods which deal admirably with advection problems are not so successful when diffusion is
present. A combined hybrid technique called the Eulerian-Lagrangian method (ELM), which is
the technique adopted in this paper, has been shown to be highly effective in the solution of the
transport equation even for very large Peclet numbers and Courant numbers in excess of one [8].

This paper aims to investigate how the unsteady water-jet cooling of a moving plate near the
SP effects the surface heat flux and internal temperature structure of the plate, taking into
account the jet velocity distribution, vapour layers in the film-boiling region and heat transfer
across the water/plate interface.

THE MATHEMATICAL MODEL

Consider a water (W) jet (Figure 1(b)) with an initial temperature 73", impinging on a hot
steel (S) plate, with an initial temperature Ty and thickness Ys, moving at a constant veloc-
ity Us in the positive x-direction in the stationary frame of an xy-coordinate system defined
by © = Qg U Qyy, where Qg = {(z,9),z € (0,Xs),y € (-Ys,0)} and Qy = {(z,y),z €
(0, Xw),y € (0,Yw)}. The steel plate exits a strip-roller at = 0 which is maintained at a
constant temperature Ty, the underside, y = —Y, is assumed insulated. These two domains
are separated by the water/steel interface at y = 0 with two insulated vapour layers on either
side of a stagnation region of width Xj;,,, see Figure 1(a). Since the water impact is assumed
frictionless, a steady velocity field which depends on the distance from the SP is defined by:
uw (z,y) = Mz — Xw/2) and vy (z,y) = Ay, where A is a constant. The computational domain
extends from the strip entering the jet cooling affected zone on the left at x = 0 up to x = Xy,
where the RHS temperature boundary condition (BC) is extrapolated from internal values.
The water-jet enters Qy along the line x = Xy, /2 at a constant temperature 73", with the
temperature at x = 0 and x = Xy extrapolated. Thus:

DTV /Dt = ay V2TV DTS /Dt = agV2TS

™V (2,y,0) =T," T5(z,y,0) =Ty |
TV (0,y,t), T (Xw,y,0) extrapolated T7(0,y,t),T%(Xg,y,0) extrapolated (1)
™ (z,Yw,t) =Ty oT%(x,—Ys,t)/0y =0

The interface temperature distribution is calculated from temperature and flux continuity if
inside the stagnation region, and insulated conditions if in the film-boiling/vapour layer region:

T5(x,0,t) = T (2,0,1)
ksOTS (x,0,t) /0y = kwoT" (x,0,t) /0y

OT*(x,0,t)/0y = 0T (x,0,t)/0y = 0

(XS,W - Xstag)/2 S xr S (XS,W + Xstag)/2
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Here, the co-moving derivative indicates the time rate of change is calculated along a charac-
teristic line defined by the solution of:

&= u(z,y) y=v(z,y) (3)

where D/Dt = 0/0t +u(z,y)0/0x + v(z,y)0/y, u = uw,v = vy in Qu and u = ug,v = vg in
Q5. The constant diffusion coefficients are defined by asw = ksw/pswcsw where ksw, psw
and cgw are the thermal conductivity, density and specific heat respectively.

The Eulerian-Lagrangian method

The solution of equations (1) subject to (2) above is carried out by the discretisation of the
domain with fixed Eulerian nodes defined by z; = iAz,y; = jAy, Aw = X/I, Ay =Y/J where
i,j ={0,1,2,..1;0,1,2,..J} and t" = nAt,n = {0,1,2,..}. Adopting the notation of Casulli
[10] and since the interface conditions are defined explicitly, the 2D explicit Eulerian-Lagrangian
discretisation of the transport equation is:

T{;'H = [1 = 2(s2 + 85|17 5y + 52T gyrjp + T aij) + 5y (T aj o 1 0jp1)  (4)

where a = uAt/Ax and b = vAt/Ay are the Courant numbers, s, , = aAt/(Az, Ay)? so that
17 .y = T[(i—a)Ax, (j —b)Ay, nAt] is the temperature back-tracked along the characteristic
line passing through the point (iAz, jAy) at time level "*! and ending at the back-tracked
point [(i — a)Ax, (j — b)Ay] at time level ¢". Since this is not (generally) a grid point an
interpolation formula is used to construct the value 77 .. , which remains constant along (3).
A bi-linear interpolation formula is chosen because it is stable and free from spurious oscillations
provided the stability condition At < [2a/(1/Az? +1/Ay?)]" is obeyed [9]. The interpolation
formula is given by:

T%—aj—b = (1 - p)[(l - Q)T%—nj—m + qT%—nj—m—l] + p[(l - Q)T%—n—lj—m + qTi—n—lj—m—l]

where a = n + p and b = m + ¢, n and m are the integer parts of a and b, with 0 < p,q < 1.
Some artificial diffusion is present but may be reduced by decreasing the sizes of Az and Ay
and increasing At [10]. An additional restriction needs to be imposed on the time step so that
the back-tracked points do not fall too far outside the boundaries thereby reducing the need
for extra ghostcells. We have chosen to confine the back-tracking to within one cell.

Interface condition

It is known that a stationary (Us = uwy = vy = 0) 1D version of the problem (1,2), with
insulated sides, without vapour layers along the interface, and infinite y boundaries, is equivalent
to a one-dimensional analytic solution in y with the same initial conditions in the form given

by:
T2 = ASW 4 BSWer fe (iy/Qw/asywt) (5)

where ASW = T0W BSW = Lhgw /aws(Te =T )/ (ksy/aw +kw/as), “+" =y > 0,“~" =
y < 0 The gradient 0T/dy is very large at the interface and any first order discretisation of
the interface conditions (2) will give rise to large errors in this region. Instead we use a second
order parabolic approximation for the derivatives in (2) such that the interface temperature at
time is given by:

(kwAys(ATY — T) + ksAyw (477, — T} )
3(ksy/aw + kwy/as)

SW_
T =

(6)



In addition, we separate the total numerical temperature field into a 1D analytic component

(1D) and a perturbed numerical component (p): T5W(x,y,t) = Tiy" (y,t) + T3V (x,y,1).
The large size of the gradient is now encapsulated in the analytic component. The interface
calculation takes place in three steps, at {" after 7}; has been calculated for j = {-Js,..,—1}

and T} for j = {1,.., Jw} then:

S _ 7S 7S W _ W W
oI, =T o -Tp , 1, , =T, —Tip,,

e use (6) to get T

S _ mS S W _ 7w w W mSw S\W
¢ Ti*L*Q - sz‘71,72 + TID—1,—2’ Til,? - sz‘1,2 + T1D1,2’ TiO - sz‘o + TlDo

These new interface values are then used in the next time step.

RESULTS

The following parameters were used to study the jet impact cooling process at the stagna-
tion point (NB: due to the high temperature gradients at y = 0 and to maintain resolution
Ayyw < Ayg, the grid given below was the minimum required for accuracy and calculation
time constraints):

Table 1
Jet and Plate Parameters
Observation window Xgp 0.5 m Total time of calculation 0.1 s
stagnation region X, 200 mm Speed of Plate Ug 10 m/s

Steel Plate thickness Y 5mm Initial water temp. 7,  30°C
Water Layer thickness Yy 1 mm Initial plate temp. Ty 1000°C
A{L‘SZAIL'W:XS’W/IS’W 10 mm AySZYS/Js,JS:5O 0.1 mm

Table 2
Thermophysical Properties

Density p Specific Heat ¢ Thermal Conductivity &

(kg/m?) (J/kgK) (W/mK)
Water 1000 4200 0.597
Steel 7897 473 40

Numerical test

The numerical solution of (1) with the same initial conditions and the first two interface condi-
tions of (2) was tested against the 1D analytic solution (5) (no non-stationary analytic solutions
are available) by imposing left and right insulation boundary conditions along with the upper
and lower boundary conditions of (1) as Y w = £1m ~ £oo while ensuring Us = uy = vy = 0.
The absolute and relative percentage errors were calculated over the entire domain Qg U Qyy,
see Figure 3.
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Figure 3. (a) Absolute error with time and (b) Relative percentage error contour plot for the
whole temperature field compared to the 1D solution (T,,um — T1p)/Tip after 0.1 s.
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Surface heat transfer at the stagnation point

For the jet cooling case (Eqn (1) with conditions (2) and Tables 1 & 2) the graphs of the
surface/interface temperature and heat flux at the SP for various velocity distributions were
obtained as a function of time up to 0.1 s, after which an approximate steady state was reached.
These are shown in Figure 4. Cross-sectional temperature profiles for the case A = 100 were
obtained with time, see Figures 5 and 6.
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Figure 4. The effect of A on graphs of SP surface (a) heat flux and (b) temperature versus time.

DISCUSSION AND CONCLUSION

Although a linear growth in error occurs over the measured time, Figure 3(a), the maximum
absolute error never exceeds 0.4°C'. The large errors incurred in the calculation of the interface
temperature can be seen in the relative percentage error contour plot of Figure 3(b). Since
steady state conditions are approximated after 0.1 s and the error stays small we consider the
numerical technique adequate for our present purposes.

The effect of velocity distribution on the transport of heat of a moving steel sheet impinged
by a water-jet possesses two aspects, first, the transport of heat by the water velocity field
momentarily decreases the surface temperature at the SP, Figure 4(b), until the much stronger
transport in the steel sheet raises the temperature after a characteristic transport time scale
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Figure 6. Detailed contour plots of (a) temperature and (b) 07/dy in the vicinity of the SP
after 0.1 s for A = 100.

X/(2Us). The size of this initial temperature drop is proportional to the size of the water ve-
locity field chosen. Secondly, Figure 4(a) shows that higher water velocities (larger \) increase
the surface heat flux which is of the same order as earlier research (5MW/m?) [7]. Similarly,
there is a lowering of the corresponding surface temperature at the stagnation point (Figure
4(b)) which also is in agreement with previous research [6].

Time dependent behaviour includes the development of a cooled patch, Figure 5(a)-(c), 6(a),
in the stagnation region which is elongated downstream in the strip by the steel velocity trans-
port after the characteristic transport time scale. Finally, Figure 6(b) shows the distinct size
difference in 0T /0y above and below the interface with the gradient inside the water domain
as much as 20 times greater than that in the steel, indicating the difficulty in obtaining conver-
gent results in the water domain without using the semi-analytical treatment of the interface
condition as adopted in this study.
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