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ABSTRACT: A numerical method for simulating variable density multiphase fluid flows is presented in this paper. 
It is a hybrid Eulerian-Lagrangian method solving the incompressible Navier-Stokes equations on a fixed Eulerian 
grid for velocity and pressure. Fluid phase is tracked in a Lagrangian manner by using marker-particles (Bierbrauer 
and Zhu, 2007a) to update the grid density and viscosity. A high order Godunov advection scheme, together with an 
approximate projection scheme to ensure incompressibility, is used to deal with rapid changes in fluid properties. 
We call this scheme the Godunov-Marker-Particle Projection Scheme (GMPPS), which implements pressure 
corrections to avoid spurious numerical boundary layers for multiphase flows. We have validated the GMPPS by 
comparing our numerical results with those calculated from an exact solution, with constant density, as well as some 
available physical experimental results for a variable density case. It is demonstrated that the scheme has second-
order accuracy in time and space for a range of Reynolds numbers. The fact that test results of a two-phase droplet 
impacting on solid and liquid surfaces compare well with experimental results suggests that the GMPPS has great 
potential to be used to solve multiphase flow problems. 
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1. INTRODUCTION 

There# are many inherent difficulties when 
attempting to model multiphase1 flow problems 
arising in nature or in industrial processes. One 
such process is the impact of a fluid droplet onto a 
solid or liquid surface and the consequences of 
such impacts, for example, raindrop-induced 
erosion in agriculture (Ghadiri, 2004) or spray 
cooling of galvanised steel sheets in industry 
(Bierbrauer, 2004). Depending on the 
characteristic scales of an individual droplet, the 
impact process is governed by the relative 
interplay of inertial, viscous and capillary forces 
within the fluids considered. Accurate depiction 
and tracking of the interacting fluid interfaces 
within a robust multi-phase flow algorithm 
(MPFA) remains a difficult task. One such 
interface tracking algorithm (ITA), the Marker-
Particle method (MP), has been described in a 
previous paper by the authors (Bierbrauer and 
Zhu, 2007a). The aim of this paper is to apply the 
MP method as part of a larger multi-phase flow 
algorithm and examine its accuracy and efficiency 

                                                           
# Most of the work for this paper was conducted while the author 

was at the University of Wollongong. 
1 Specifically, multi-phase refers to the interaction of two distinct, 

immiscible fluids, e.g., a water droplet in air, rather than two 
thermodynamic phases, e.g., liquid water and steam. 

in solving two-phase droplet impact problems: 
impact of a droplet onto a solid surface and 
impact of a droplet onto a layer of the same fluid. 
As an initial test of the method, the current study 
is limited to two dimensions with three 
dimensional aspects to be included at a later date. 
Typically, any general multi-phase flow algorithm 
possesses two main aspects: the ITA and the other 
parts of the MPFA which solve the problem itself. 
The main aspects that such a flow algorithm must 
be able to deal with include the non-linear 
convective term in the Navier-Stokes (NS) 
equations and the viscous term with variable 
viscosity and surface tension. Most importantly, it 
must transfer information, such as velocity, from 
the MPF algorithm to the ITA, and retrieve 
information, such as grid density, from it. This 
paper is concerned with the solution of unsteady, 
viscous, incompressible two-phase flows of 
immiscible fluids. Consider, at first, the MPFA. 
Current interest rests with incompressible multi-
phase flows as these are commonly observed in 
many natural and industrial processes where the 
characteristic velocities do not exceed the speed 
of sound in the media considered. Research 
efforts have shown that an Eulerian projection 
method remains one of the best available methods 
to model incompressible multi-phase flow 
problems. It does not only maintain an excellent 
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solenoidal velocity field but also allows the 
inclusion of viscous and surface tension forces in 
a natural way. One way to construct such a model, 
avoiding the awkward application of interfacial 
conditions among multiple flow solutions 
(Lakehal, Meier and Fulgosi, 2002), is to adopt 
the One-Field or single-domain approach 
(Anderson, McFadden and Wheeler, 1998; 
Scardovelli and Zaleski, 1999). All interacting 
fluid phases are now part of a single fluid 
(Vincent and Caltagirone, 2000; Rider et al., 1995) 
and velocity and pressure become global field 
variables. Bulk fluid properties, such as density 
and viscosity, remain constant within each phase 
but vary discontinuously across fluid interfaces. 
The fluid interface itself is then “immersed” 
within this global fluid. The fluid phases are 
dynamically connected through interfacial 
conditions of impermeability for immiscible 
fluids (continuity of normal velocity), for viscous 
flows the dynamic condition (continuity of 
tangential velocity) and in the presence of surface 
tension the jump in stress across the interface. 
These conditions now become part of the NS 
equations themselves (and may be recovered 
(Anderson, McFadden and Wheeler, 1998)) 
through the inclusion of a surface tension force 
term written as a body force (Brackbill, Kothe 
and Zemach, 1992), i.e., possessing a value 
everywhere in the domain, although only non-
zero near fluid interfaces. 
It is a relatively simple procedure to construct a 
numerical model by using a finite difference 
method and the well-known high order, semi-
implicit Godunov method to accurately construct 
the non-linear term across material boundaries 
(Colella, 1990). This procedure is adopted in this 
paper. In order to avoid local grid decoupling and 
improve accuracy, the approximate projection 
method was developed (Almgren, Bell and 
Szymczak, 1996; Almgren, Bell and Crutchfield, 
2000) where the solenoidal constraint is relaxed 
so that it is only true to within the truncation error 
of the mesh spacing (Guy and Fogelson, 2005). 
Here the fully developed second-order accurate 
approximate projection method of Rider (1994) 
and Puckett et al. (1997) is used within a 
collocated grid for velocity and pressure. In 
addition, the pressure correction of Brown, Cortez 
and Minion (2001) is updated here for the 
variable density case ensuring second-order 
accuracy in time as well as consistency of the 
pressure gradient. 
The projection itself is imposed through the 
solution of a Poisson equation for a gauge 
variable which is used to eliminate non-solenoidal 

modes within the velocity field obtained from the 
momentum equation. Unfortunately, as the 
density field is discontinuous across fluid 
interfaces, a Poisson equation with discontinuous 
coefficients must be solved. This means that, for 
general multi-phase flows, second-order accuracy 
cannot be expected from a direct application of 
this method (Szymczak et al., 1993). Such density 
discontinuities may be lessened by smoothing the 
sharp gradient in density in the neighbourhood of 
the discontinuity (Sussman, Smereka and Osher, 
1994) and this method is used in the present study. 
It is also noteworthy that the initial velocity field 
must be divergence-free so as not to carry non-
solenoidal errors forward in the solution. This can 
be ensured either by obtaining an analytical 
solution for the solenoidal initial velocity field 
(Bierbrauer and Zhu, 2007b) or by projecting the 
initial flow field, obtaining a good initial 
solenoidal velocity and an approximation to the 
pressure (Rider, 1994). One of the drawbacks 
associated with approximate projection methods 
on collocated grids is the existence and growth of 
null spaces in the discrete divergence operator 
giving rise to “checkerboard modes” where the 
discrete operator fails to recognise non-
divergence-free modes (Rider et al., 1998; 
Nourgaliev, Dinh and Theofanous, 2003). In the 
current method, these modes are damped through 
the use of iterated projection and velocity filters 
as discussed by Rider (1994). 
The MPFA, discussed in the previous paragraphs, 
has been shown to be an accurate, robust method 
of high fidelity (Rider et al., 1995). It has been 
used to solve constant density flow problems 
(Bell, Colella and Glaz, 1989), and has been 
extended to the variable density case (Bell and 
Marcus, 1992). Its strengths and weaknesses have 
been investigated in depth (Almgren, Bell and 
Crutchfield, 2000; Guy and Fogelson, 2005; 
Brown, Cortez and Minion, 2001). More recently, 
it has been used in conjunction with various ITAs, 
especially Level-Set (Sussman, Smereka and 
Osher, 1994; Sussman et al., 1999) and VOF 
methods (Vincent and Caltagirone, 2000; Puckett 
et al., 1997), to solve two-phase flow problems. 
While Level-Set methods possess problems in 
conserving mass and dealing with severe 
interfacial deformations, VOF methods cannot 
simulate fluid chunks which are smaller than a 
grid cell. In order to avoid such problems when 
reconstructing fluid interfaces, it was noted that 
pure Lagrangian particle methods such as PIC 
(Brackbill and Ruppel, 1986) and SPH (Ritchie 
and Thomas, 2001; Colagrossi and Landrini, 2003) 
track the interface implicitly without having to 
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construct the interface explicitly and therefore 
avoiding large derivatives at interfacial cusp 
points. As well, they have the potential to 
maintain fluid identity for all time. The MP 
method is a particle tracking algorithm which 
uses aspects of previous PIC methods. Particles 
are used only to track fluid colour (identity) so 
that fluid identity is never lost. Fluid colour is 
interpolated back to the grid as grid volume 
fractions from which grid density and viscosity 
may be reconstructed. This makes the 
combination of Eulerian and Lagrangian aspects 
an Eulerian-Lagrangian method for multiphase 
flows. For this reason the method is named the 
Godunov Marker-Particle Projection Scheme 
(GMPPS). The MP method has already been 
validated for flows where the flow field has been 
explicitly given and no forces are acting. It is the 
aim of this paper to combine the MP method with 
the Godunov projection scheme and apply the 
new method to complicated two-phase flow 
problems which undergo severe interfacial 
deformations and disruptions. The droplet-solid 
and droplet-fluid impact problems satisfy these 
criteria. 
The droplet-solid impact problem (DSIP) has 
been extensively studied in the literature and 
requires the method to handle both large 
discontinuous variations in density and viscosity 
as well as the disruption of fluid interfaces as the 
droplet impacts the surface. The experimental 
data of Rioboo, Marengo and Tropea (2002) are 
used for comparisons. The droplet-liquid impact 
problem (DLIP) is less well studied but in 
addition to the difficulties associated with the 
DSIP, this problem is ideal for studying the 
growth of instabilities which may arise over 
longer calculation times (Rider et al., 1995). The 
experimental data of Liow (2001) for a deep layer 
and of Josserand and Zaleski (2003) for a shallow 
layer are used for comparisons. 
The paper is organised as follows: Section 2 
describes the Godunov projection method in 
detail including the physical system described by 
the non-dimensionalised NS equations and a 
semi-discrete version of the projection method 
including the pressure update for variable density 
flows. The discrete differential operators used and 
the allocation of boundary conditions and ghost 
cells are also detailed. The smoothing of material 
properties is also briefly discussed. Section 3 
describes the dynamical tests used in the 
validation of the method including an exact 
solution of the incompressible NS equations for 
constant density flow in order to demonstrate the 
efficacy of the Godunov projection part of the 

method. The second set of tests includes the 
droplet-solid and droplet-liquid impact problems 
which test both the MPFA and the MP method. 
Finally, the paper ends with some concluding 
remarks in Section 4. 

2. THE GODUNOV PROJECTION 
METHOD 

2.1 The NS equations 

For each of the problems considered in this paper, 
the unsteady incompressible Navier-Stokes 
equations are solved and are defined by the  
non-dimensionalised system in the domain  
Ω = {(x, y) : 0 < x < X, 0 < y < Y}, with the only 
external force being gravity for the droplet impact 
problems, i.e., Fr ≠ ∞. 
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where we have non-dimensionalised with respect 
to the scales in: length D, velocity U0, density ρ1, 
viscosity μ1, pressure  and the convective 
time D/U0. Here ρ12 = ρ2/ρ1 and μ12 = μ2/μ1; C is 
the volume fraction, the Reynolds number is 
Re = ρ1U0D/μ1 and the Froude number is 

. While the density update is a direct 
consequence of the mass conservation equation, 
i.e., the simple geometric or serial average seen in 
the fourth equation of (1), the viscosity update is 
not a natural consequence of a physical law. A 
harmonic or parallel average was found by Kothe 
(1999) to give better results in practice whereas a 
serial average sometimes caused unphysical 
acceleration of fluid elements. Therefore, the 
harmonic average shown in the fifth equation of 
(1) was used. For both the exact solution having 
constant density we use ρ = ρ1 = ρ2  and 
μ = μ1 = μ2 . For the droplet impact problems the 
droplet density, viscosity, diameter and impact 
velocity were used as scales with the volume 
fraction being that of the droplet fluid. 

2
01Uρ

gDUFr /2
0=

Boundary conditions are a specified velocity on 
the boundary ub of the domain, usually solid 
walls, and no flux conditions on the density, 
viscosity and consequently the volume fraction, 
i.e., 

0=|,0=|0,=|,=| Ω∂Ω∂Ω∂Ω∂ ∇⋅∇⋅∇⋅ Cμρb nnnuu  (2) 
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All of the test problems, except the exact solution, 
used solid walls ub = 0. The exact solution 
required specified velocity values at the boundary. 
The initial condition (IC) in each case was 
problem dependent. The initial condition for the 
exact solution is determined at t = 0 directly from 
the exact solution. For the two droplet impact 
problems all initial velocities were zero except the 
droplet impact velocity, U0 ≠ 0. Initial densities 
and viscosities were constant in each fluid and all 
initial pressures were zero. 

2.2 The semi-discrete projection method 

Systems (1) and (2) are solved with the 
approximate Godunov projection method with 
second-order Crank-Nicolsen time discretisation. 
Given the strengths and weaknesses of the various 
projection methods, we choose to use the variable 
density version of PMII as described by Guy and 
Fogelson (2005). In semi-discrete form, the 
corrected, variable density, second-order PMII 
approximation of the momentum and mass 
conservation equations in (1) at time t n reads: 

 Step 1: given un, pn−1/2, ρn+1, μn+1, Cn+1 solve 
for the intermediate velocity 
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followed by 
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 Step 3: update the pressure gradient 
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approximation to the non-linear advection term at 
the half time level and is the one detailed in 
Puckett et al. (1997). The velocity at half time 

level has also been used in the viscous term and is 
given by . The extra correction 
term 
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eliminating the intermediate velocity in the 
momentum equation (3) using the update given 
by (5). An analogous expression to that obtained 
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which reduces to  when 
 so that the result in Brown, Cortez 

and Minion (2001) remains true within each 
individual fluid but not near fluid interfaces 
where the remaining terms on the right of Eq. (7) 
effect the result. 
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Note that in the projection method described 
above, the time updated density and viscosity are 
required even in Step 1 where only the values at 
the nth time level are known, i.e., ρn and μn. This 
is calculated with the use of the marker-particle 
method of Bierbrauer and Zhu (2007a) where 
fluid particles are advanced forward in time to 
track individual fluid phases while carrying 
particle colour information. The time updated 
volume fraction Cn+1 is then obtained by 
interpolation from surrounding fluid particles. 
This provides the solution of the advection 
equation for the volume fraction, the third 
equation in (1). The density and viscosity at the 
next time level are then given by 

1
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The densities and viscosities at the half time level 
can now be constructed, i.e.,  
and . 
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2.3 Spatial discretisation of differential 
operators 

A cell-centred computational grid defined in 
Bierbrauer and Zhu (2007a) with velocity 

 and pressure  defined at cell 
centres  is used although some use is still 
made of cell-edge centred values, e.g.,  
is the right cell edge. The integer counters are 
defined by  and  so 
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that there are a total of JI ×  number of internal 
domain cells. The discrete divergence and 
gradient operators used individually in the 
momentum and mass conservation equations are 
second-order accurate centred discretisations 
defined by 

 cell-

y
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)/2(= 12/1 j,iji,j,i μμμ ++ + . Note that this means that 
the divergence operator on the right hand side of 
the projection (4) is the cell-centred one (8). 
Although this is not consistent with the Laplacian 
on the left hand side, the intention is to 
approximate the projection that would result if the 
cell-centred divergence (8) and gradient (9) 

2/1 ,iσ +

 to define ioperators had been used
GσD=Lσ ⋅ . 

2.4 Construction of ghost cells 

2.4.1 Velocities near the boundary 

The domain boundaries are defined at cell edges 
so that , ,  
and . Specified conditions for the 
physical velocity are defined along left, right, 
bottom and top edges of the domain, given by 
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velocity ghost cells. Note that the viscous term 
also gives rise to velocity boundary terms at 
corner values such as u 1/2 , 1/2 which in turn require 
ghost cell values at u0, 0 which must be 
extrapolated from existing ghost cells. 
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2.4.2 Physical parameters near the boundary 

The boundary conditions for the density and 
viscosity use zero normal gradient at the 
boundaries which are satisfied by 
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which immediately defines the inverse density 
BC's, for example, σ0 , j= 1/ρ0 , j , and is also used 
for the volume fraction C. 

2.4.3 The gauge variable near the boundary 

A consequence of the setting of the boundary 
condition for the intermediate velocity to that of 
the physical velocity BC is that the boundary 
condition for the normal gradient of the gauge 
variable that is consistent with the velocity update 
(5), i.e.,  
implies a homogeneous Neumann BC for φ. That 
is, along each boundary we have the BC seen in 
(4). 
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A simple constant extrapolation (Bell and Marcus, 
1992) gives  and ,10 j,j, φφ = ,,1 jI,jI φφ =+ 10 i,i, φφ =

Ji,Ji, φφ =+1  for the gauge variable ghost cells. 

2.4.4 The pressure near the boundary: the 
constant density case 

Provided the density and viscosity are constant 
within the entire domain, the so-called constant 
density case, equation (6) allows a direct pressure 
update in Ω , so that 
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However, no boundary conditions are ordinarily 
defined for the pressure which must then be 
extrapolated from cells internal to the domain. 
A second-order linear extrapolation of the 
gradient (Rider et al., 1998) evaluated at the 
boundary is used, i.e., 
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2.4.5 The pressure near the boundary: the 
variable density case 

For the variable density case, equation (6) now 
only allows the gradient of pressure to be updated 
since the gradient operator does not commute 
with the Laplacian as it did in the constant density 
case, . Then for the 
variable density case, in 
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When this is true, the gradient of pressure does 
not require any boundary conditions. However, 
the presence of homogeneous Neumann boundary 
conditions on the gauge variable, u ⋅ ∇ φ | ∂Ω = 0 
used in (4), effects the value of ∇p near the 
boundary through its influence on Lμ(σ∇φ) there. 
Projection methods naturally define the normal 
component of velocity at the boundary, 

; however, the tangential 
component is not guaranteed to be homogeneous 
since  

which is in error by . In this 
paper, we adopt the procedure of Brown, Cortez 
and Minion (2001) and simply reset the 
component to the correct value at the end of the 
time step. This is also carried forward to the 
boundary conditions for σ∇φ when evaluating the 
pressure gradient. 
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Evaluated at the boundary, the normal and 
tangential boundary conditions on ∇φ give the 
conditions shown earlier in (14) which, upon 
using a vector defined by , gives φ∇= σψψ Tyx ),(
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and the corner ghost cell values 
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which are used in the evaluation of the vector 
( ) ( )( )Ty

ji,μ
x

ji,μ σLσL φφ ∇∇ ,  near the boundary. See 
Appendix for details. 

2.4.6 Initialisation of the pressure field 

The exact test already possesses solenoidal initial 
conditions; however, the two droplet impact tests 
do not. They are both initiated by a non-zero 
initial vertical velocity for the impacting droplet 
with the surrounding media at zero velocity, 
collectively called ũ0. This represents a 
discontinuity in velocity as well as the already 
present discontinuity in density and viscosity, and 
must be alleviated. A global solenoidal initial 
velocity field is essential for starting the 
calculation without carrying forward any initial 
errors. If there are any external forces acting, they 
must also be included. The velocity field may be 
made divergence free and a pressure field be 
initiated by projecting the discontinuous field 
using the projection (4) developed earlier. That is, 
given the discontinuous non-solenoidal field ũ0 
and zero initial pressure 0~p , we add in the 
external force in the present case gravity and 
define a new initial velocity field  ,0∗u

juu ˆ~=
0

0,0

Fr
tΔ−∗  (18) 

with a stability constraint implied by the force 
acting so that ( )yxminFrt ΔΔ<Δ ,0 . By the 
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Hodge decomposition, any vector  may be 
decomposed into a div-free, u0, and a curl-free 
part, 

,0∗u

ϕG

u0= −

, i.e., 

ϕGu 00,0 σtΔ∗  (19) 

and by observing the fact that the new div-free 
velocity u0 must also obey the boundary 
condition u0 |∂Ω = ub , we solve the Neumann 
problem 

,0
0

1=
Δt

∗⋅ uDLσϕ  (20) 

subject to the consistent boundary condition 
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Δ
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ϕ

 (21) 

if u*,0 |∂Ω ≡ ub , we have homogeneous Neumann 
conditions; otherwise, (21) must be used. With 
the use of (19), the div-free velocity becomes 

ϕGu 00 = tσΔ  (22) 

and the pressure initialisation is 

=0p  (23) 

This will be adopted for the start of computation, 
i.e., for u0 and p−1/2. 

2.5 The convective term 

The Godunov method was developed to provide a 
robust treatment of the non-linearities in the NS 
equations at high Reynolds number while 
adjusting to rapid changes in fluid properties 
across interfaces without producing severe 
instabilities. It is a high resolution upwinding 
scheme and was originally designed to deal with 
the change in physical properties across shocks. It 
is constructed in a predictor-corrector fashion 
with several stages in each. The non-linear 
convective term in the NS equations is 
approximated here using a second-order Godunov 
method which has been previously detailed in 
both Puckett et al. (1997) and Sussman et al. 
(1999) and will not be repeated here. 

2.6 Time step restrictions 

Linear stability requires restrictions on the time 
step taking into account the stability requirements 
for the Godunov method, i.e., the CFL condition. 
As well, an extra constraint is needed for the 
inclusion of the viscous term, which was not used 
in the construction of the transverse derivatives 
and a restriction arising from the source terms 
(Sussman et al., 1999). So the final choice for the 

minimum time-step is the simultaneous 
minimisation of all of these with a safety factor of 
a half added. 
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where 
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2.7 The smoothing of discontinuities 

The smoothing of discontinuities in the physical 
properties, such as the density and viscosity, can 
be achieved by concentrating on the volume 
fraction as it is used to update both. Typically, the 
volume fraction is smoothed by convolution with 
a kernel so that the smoothed volume fraction 

)(~ xC  is 

');()(=)(~ xKxx dεr'CC
K

∫Ω
 (25) 

where  and |'| xx −=r );( εrK  is an integration 
kernel which becomes the surface delta function 
δS as ε→0. Here, ΩK is the compact support of 
the kernel, or the points for which K(r;ε) ≠ 0 and ε 
is the size of the support. Ideally, a kernel should 
possess compact support, be monotonically 
decreasing with respect to r, be radially 
symmetric, be sufficiently smooth, be a good 
representation of the delta function as | ΩK |→0 
and possess the normalisation property  

 (Williams, Kothe and Puckett, 

1998). In the present case, we choose the eighth 
degree polynomial kernel because it closely 
matches all of the properties listed above, being 
superior to say the Nordmark kernel which is not 
monotonically decreasing and tends to produce 
highly singular oscillations as | Ω |→0 (Williams, 
Kothe and Puckett, 1998). The kernel is defined 
by 

∫ΩK
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At any point (x , y) in the domain the volume 
fraction there may be convolved by considering a 
circle of radius ε , (x’−x)2+(y’−y)2 = ε2 , the 
support of the kernel, and integrating (25). 
Evaluation of this integral requires a little care 
when examining points near the boundary, within 
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one cell width, as the support of the kernel may 
overlap the boundary and therefore requiring 
ghost cells as part of the evaluation. A finite 
number of ghost cells indicate that the smoothing 
length ε  should not exceed two to three cell 
widths. 

3. DYNAMICAL TESTS AND DISCUSSION 

3.1 Multiphase fluid dynamics 

The validation of the GMPPS, developed in this 
and the previous papers (Bierbrauer and Zhu, 
2007a), involves tests of the accuracy of the 
individual Godunov approximate projection 
scheme and a test of the stability of such a scheme. 
The first test studies the unsteady constant density 
incompressible NS equations. The known time-
dependent exact solution of the incompressible 
NS equation of Chorin (1968) is used to construct 
error measures and order of accuracy estimates. 

3.2 Exact solution of the NS equations 

To test the GMPPS, we need to conduct 
numerical experiments and ideally compare 
results with those generated from an exact 
solution. One such exact solution for the time-
dependent non-dimensionalised Navier-Stokes 
equations for the viscous flow of incompressible 
fluids with constant density and viscosity, 
ρ = ρ1 = ρ2 and μ = μ1= μ 2 , is given by (Chorin, 
1968) 

t/Re)ππyπxty,x,p
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2

2
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 (26) 

For a unit square domain (0 , 1) × ( 0 , 1), a set of 
appropriate boundary and initial conditions can be 
constructed from this solution, at the boundaries 
x = 0 , 1, y = 0 , 1 and t = 0, respectively. Clearly, 
the flow velocity decays to zero as t → ∞. For 
very small Reynolds numbers, it also decays 
quickly to zero except for small times when 

0~/ Ret . For large Reynolds numbers, the initial 
state is maintained until . 0/ >>Ret
With an exact solution, absolute errors can be 
easily evaluated by defining the error 

, where  is the 
true solution for u, υ or p evaluated at the grid 
point (x i , yj) at time t n and F  is the numerical 
solution. We contrast the L1 error norm 

 with the max 

norm . Relative errors are 

avoided given the fact that the true solution is 
zero in particular regions, e.g., u is zero along the 
lines x = 1/2, y = 0 , 1. 
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The solutions (26) exponentially decay over time 
with a half life Re0351.0~2πReT 2/2ln= . One 
way of choosing a stopping criterion, in order to 
evaluate numerical errors, is to stop the 
computation within a number of half-lives. Here 
we choose a single half life, e.g., for Re = 100, the 
stopping criterion is t = T = 3.5 time units. 
Both the exact and multiphase problems must 
solve two sets of linear systems, one for the 
Poisson equation and another for the momentum 
equation. These systems are solved iteratively 
using the Bi-CGSTAB linear solver. Here the 
smallest matrix elements are limited by a 
threshold value of 10−7; all smaller values were 
taken as zero. This allows the use of sparse 
storage mode where only non-zero entries are 
used to solve the problem consequently speeding 
up calculation times. Iterations were stopped for 
convergence tolerances determined by the grid 
used, e.g., for 16 × 16 grid 210~ −tol

yx Δ=
)(e

hf

1
)()( ||e

h
n

h ff||e(h) −=

. The time 
step was always half of that required by linear 
stability analysis (24) except where this did not 
allow time stepping to coincide with the half-life 
and the time step was consequently lowered. 
The order of accuracy of the method is calculated 
as was done in Bierbrauer and Zhu (2007a) by 
obtaining the numerical solution  on a grid 

 compared with the exact solution on 
the same grid  so that the error in the  
norm is  on that grid. Then, 
by repeating the procedure on a refined grid with 
half of the grid spacing, h/2, we get e(h/2). The 
order of accuracy is now given by 
log2[e(h)/e(h/2)]. 

)(n
hf

h Δ=
1L

Another way of analysing the solution quality is 
through the decay of kinetic energy in the 
problem. The integral of kinetic energy is in fact 
an invariant of solutions to the Euler equations 
and so its variation in time for computed solutions 
is a gross measure of the accuracy of the method 
(Bell Colella and Glaz, 1989). That is, 

)4(exp
2
1== 2

1

0

1

0
t/ReπdxdyK −⋅∫∫ uu  (27) 

The correct physical behavior of a method may be 
judged by how it dissipates kinetic energy and in 
this case, it should decay exponentially. 
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Note that the constant density case does not 
require the use of particles to track fluid phases. 
However, the method is designed to be used in 
either case and particles are used to update 

density and viscosity. In addition, no smoothing 
of discontinuities is necessary. Filters are also not 
used. 

 

  
(a) Re = 10 (d) Re = 10 

  
(b) Re=100 (e) Re=100 

  
(c) Re=500 (f) Re=500 

Fig. 1 Absolute errors and kinetic energy decay for velocity components, pressure and divergence over time for 
Reynolds numbers of Re = 10, 100, 500 on a 32 × 32 grid with a quadratic pressure gradient.
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3.2.1 Results: absolute errors for a single half-
life 

Fig. 1 shows the variation in absolute errors over 
a single half-life on a 32 × 32 grid, in the max 
norm, for the two velocity components—pressure 
and divergence of velocity, as well as the decay of 
kinetic energy for the three Reynolds numbers 
Re = 10 , 100 , 500. Clearly, the velocity errors for 
the Re = 10 and Re = 100 cases remain within the 
expected second-order error, a multiple of 

32 10~ −h , whereas the Re = 500 case shows 
velocity errors a little higher than these. In all 
cases, except for Re = 500, the pressure error is 
larger than the velocity errors. Given the 
problems associated with approximate projection 
methods near no-slip boundaries, this may be 
expected. In addition, although the fluctuations in 
the divergence error are larger than the minor 
oscillations in the pressure error, they 
nevertheless are still very small. For all cases the 
kinetic energy decays in a physical way. 

3.2.2 Order of accuracy 

The order of accuracy is calculated as described 
in Section 3 using a pair of grids: the first pair 
comparing a 16 × 16 grid as the h case to a 32 × 32 
grid as the h/2 case and the second pair a 32 × 32 
grid for the h case and 64 × 64 grid for the h/2 
case. The absolute errors E(h), E(h/2) and the 
corresponding order of accuracy is obtained. The 
results for each pair are shown for the three 
different Reynolds numbers Re = 10 , 100 , 500, 
for both the L1 and max norms, in Tables 1 and 2. 
The tables show the absolute errors for the 
horizontal and vertical components of velocity as 
well as the pressure. For each Reynolds number a 
single half-life was used as the endpoint for each 
calculation: for Re = 10 ,  T = 0.351, Re = 100, 
T = 3.51 and for Re = 500, T = 17.55 time units. 

Table 1 Absolute errors in the L1 norm with the 
corresponding order of accuracy for 162 – 322 
and 322 – 642 grids for three different 
Reynolds numbers. 

 16 2 – 32 2 32 2 – 64 2 
Re e(h)  e(h/2)  Order e(h) e(h/2) Order

 u 1.76E-03 2.93E-04 2.59 2.93E-04 6.24E-05 2.23
10 v 1.71E-03 2.89E-04 2.56 2.89E-04 5.95E-05 2.28

 p 1.62E-02 1.64E-03 3.30 1.64E-03 3.09E-04 2.41
 u 1.43E-03 3.45E-04 2.05 3.45E-04 7.66E-05 2.17

100 v 1.20E-03 2.42E-04 2.31 2.42E-04 6.15E-05 1.98
 p 2.90E-03 7.02E-04 2.05 7.02E-04 1.39E-04 2.34
 u 2.86E-03 7.43E-04 1.94 7.43E-04 1.53E-04 2.28

500 v 3.00E-03 6.25E-04 2.20 6.25E-04 8.54E-05 2.87
 p 4.97E-03 8.15E-04 2.61 8.15E-04 2.14E-04 1.93

Studying Table 1, in the L1  norm, shows that the 
method is generally second-order. A similar set of 
results are seen in Table 2 for the max norm. 

Table 2 Absolute errors in the max norm with the 
corresponding order of accuracy for 162 – 322 
and 322 – 642 grids for three different 
Reynolds numbers. 

 16 2 – 32 2 32 2 – 64 2 
Re e(h) e(h/2) Order e(h) e(h/2) Order

 u 4.71E-03 8.06E-04 2.55 8.06E-04 1.54E-04 2.39
10 v 4.85E-03 7.29E-04 2.73 7.29E-04 1.51E-04 2.27

 p 4.43E-02 4.81E-03 3.20 4.81E-03 9.31E-04 2.37
 u 4.14E-03 1.22E-03 1.76 1.22E-03 2.56E-04 2.25

100 v 6.56E-03 5.82E-04 3.49 5.82E-04 1.50E-04 1.96
 p 8.43E-03 2.78E-03 1.60 2.78E-03 6.81E-04 2.03
 u 1.20E-02 2.08E-03 2.53 2.08E-03 5.44E-04 1.93

500 v 2.13E-02 8.82E-03 1.27 8.82E-03 1.13E-03 2.96
 p 1.32E-02 2.52E-03 2.39 2.52E-03 8.74E-04 1.53

 

3.3 The droplet-solid impact problem 

The DSIP and DLIP are both two-phase fluid 
flow problems and require the use of marker-
particle tracking, as described in Bierbrauer and 
Zhu (2007a). The data of this previous work 
suggested using 16 particles per cell which is used 
throughout the present study. In addition, minimal 
smoothing is used with a smoothing length of two. 
Throughout, only the velocity filter of Rider 
(1994) is used to ensure an approximate 
solenoidal velocity field. 
Experiments have shown that the DSIP is 
governed by the droplet's inertial properties, 
impact kinetic energy (velocity and Reynolds 
number), viscosity and surface tension in that 
order. There are several main phases of droplet 
impact on a solid surface: the kinematic phase 
controlled by the impact velocity U0 and droplet 
diameter D up to a time t* = tU0 /D < 0.1. This is 
followed by the spreading phase: where a thin-
film lamella spreads outwards from the edges of 
the droplet impact zone bounded by a rim. The 
kinetic energy is now dissipated into potential 
energy by surface tension and viscosity (Rioboo, 
Marengo and Tropea, 2002) as well as some 
internal kinetic energy of the droplet (Clanet et al., 
2004). Surface tension effects decelerate the 
lamella spread after Wet >∗ . Since the present 
simulation does not possess surface tension, the 
calculation is halted before surface tension effects 
become significant. 
The DSIP itself is solved in a domain with X = 8, 
Y = 3 with solid wall boundaries, u |∂Ω = 0 , having 
zero initial pressure and velocity except for the 
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droplet which possesses an initial impact velocity 
of U0 . Calculations are performed using a 80 × 30 
grid and, using the definition of Josserand and 
Zaleski (2003), the spreading radius is defined as 
the radius of the point where the velocity of the 
fluid was maximal at a given time. The droplet is 
initially assumed to be spherical and is positioned 
just contacting the surface at the start of the 
calculation. The velocity field must be made 
divergence free and so requires an initial 
projection on the discontinuous initial data. 

3.3.1 Results: spread factor 

One way to measure the present method's ability 
to simulate droplet impacts on solid surfaces is 
through the time-dependent radial spread factor r, 
here non-dimensionalised with respect to the 
length scale D, so that r* = r /D. This measures 
the time-dependent radial distance r* (t) from the 
impact point that the droplet has spread across the 
surface as a function of dimensionless time, 
t* = tU0 /D. A comparison of numerical results, 
shown as solid, dashed, dash-dotted and dotted 
lines, and the experimental data, shown as square, 
circular and cross symbols, of Rioboo, Marengo 
and Tropea (2002) for the impact of droplets of 
water, glycerin and silicon oil is shown in Fig. 2. 
The physical data used here is summarised in 
Table 3. 
 
 

 
Fig. 2 Radial spread factor, r* = r/D, as a function 

of dimensionless time, t* = tU0 /D, for 
numerical simulation and the experimental 
results of Rioboo, Marengo and Tropea 
(2002). 

Table 3 Physical data used in the numerical solution 
for various droplet fluids in the DSIP. 

Fluid ρ 1 (kg/m3) μ 1 (kg/ms) D (mm) U 0 (m/s) We 
water 1000 0.001 2.77 1.12 48 
water 1000 0.001 2.71 1.53 88 
silicon oil 966 0.019 2.73 1.19 178 
glycerin 1261 1.410 2.45 2.89 396 

 

The density and viscosity of air used in the 
solution are 1 kg/m3 and 1.8 × 10−5 kg/ms, 
respectively. 
The numerical results compare quite well with the 
experimental values. Numerical solution curves 
are clearly of the same shape as the experimental 
data although they are always larger than the 
experimental data, for example, at t* = 0.02 the 
difference in 04.0~∗Δr  whereas at t* = 0.10, it is 

02.0~∗Δr . The only case that does not follow this 
trend is the silicon oil result although it is difficult 
to judge given that there is only one data point. 
The Weber numbers in each case are 
We = 48 , 87 , 178 , 396 for the two water, silicon 
oil and glycerine droplets respectively so we do 
not expect surface tension effects to become 
severe until 7~∗t , well out of the range of the 
current timescale. However, surface effects are 
expected to hinder radial spread even at earlier 
times. Given that the numerical results are 
computed without surface tension, it is to be 
expected that these results should show a larger 
spread factor as compared to the experimental 
data which is always under the restrictive 
influence of surface forces. It should be noted that 
while spreading occurs, the kinetic energy of the 
drop is being converted to surface energy; this is 
what eventually stops the spreading and is absent 
from the numerical solution. While the solid walls 
at the left and right boundaries of the domain are 
not expected to influence the results at such short 
timescales, it is to be expected that more distant 
walls will improve on these results. It is also 
expected that finer grids will improve these 
results. 

3.4 The droplet-liquid impact problem 

The DLIP may be categorised into two kinds of 
impact: droplet impact onto shallow layers of the 
same liquid, when the layer thickness, h, is 
comparable to the diameter of the droplet, i.e., 
with H = h /D ≤ 1; and droplet impact onto deep 
liquid layers or pools of the same liquid, where 
the solid wall at the layer bottom has little 
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influence on the impact taking place at the layer 
top, i.e., when 1>>H . 
For the case of deep layers, after the impacting 
droplet has collided with the free surface of the 
pool liquid, a film of liquid is expelled upward 
and outward from the edge of the colliding region 
(Liow, 2001). A rim is formed at the top of the 
film and a cavity develops below the level of the 
original liquid surface (Fedorchenko and Wang, 
2004). The cavity develops about the vertical line 
of symmetry about the point of impact which 
allows the cavity depth to be measured. In this 
paper, the measurement was performed along this 
line of symmetry as measured from the original 
horizontal surface of the liquid. Calculations were 
performed in a domain with X = 20,  Y = 10 using 
a 60 × 30 grid with solid wall boundaries. The 
calculations were terminated before surface 
tension effects became predominant. Once again, 
the problem requires pre-projection before the 
start of computations with the same initial and 
boundary conditions as the DSIP except with the 
droplet now initially touching the layer instead of 
the solid surface. 
For the case of shallow liquid layers, the 
calculation was performed in a 80 × 40 grid and 
with a domain of size X = 4,  Y = 2 in order to 
capture the shallow layer realistically. Given the 
limited number of time steps, the influence of the 
walls on the results should be minimal. Again, 
calculations were initiated by placing the 
impacting spherical droplet, impact velocity U0 ,  
just in contact with the layer with the rest of the 
domain at zero initial velocity and pressure. An 
initial projection was required to obtain a div-free 
velocity field. Again, the spreading radius was 
used as a quantitative measure of the impact 
process and was calculated as part of the problem 
solution and defined in the same way as for the 
DSIP. 

3.4.1 Results: deep layer-cavity depth 

Experimental data for deep layers is often in the 
form of graphs of cavity depth, R* = R /D, as a 
function of time, t* = tU 0 /D. In the numerical 
simulation, we use H = 5 to approximate a deep 
layer. The depth of the cavity generated is 
measured from the initial quiescent layer position 
along the symmetry axis. Fig. 3 shows how the 
cavity depth varies over time. Numerical results 
are shown as open symbols and experimental 
ones as filled symbols. Both the experimental and 
numerical data are shown as a discrete set of 
points through which polynomial curves have 
been fitted. Here the experimental data of Engel 

(1967), Morton, Rudman and Liow (2000) and 
the 16G result of Liow (2001) are used. See 
Table 4 for details. 
Fig. 3 shows that the numerical solutions for the 
Morton case, represented in triangles, compare 
very well with the experimental data. Any surface 
force effects are expected to have a greater 
influence in this case given its smaller impact 
velocity although such effects are not expected to 
become significant until .15~∗t The smaller 
impact velocity also means that the influence of a 
finite layer depth will be minimal in this case. 
Note that the surface tension effects are 
considerably less important for the other two 
cases: not until 27~∗t  (Liow, circles) and 141~∗t  
(Engel, squares). The difference between the 
numerical and experimental results for both of 
these cases must then be mainly due to a finite 
layer depth which alters the impact characteristics 
as the droplet starts to penetrate deeper into the 
layer. This is shown in the slightly diverging 
tendencies of both the 16G and Engel results. As 
expected, the Engel result shows the greatest 
difference since its impact velocity is the largest. 
 

 
Fig. 3 Dimensionless cavity depth, R* = R /D, as a 

function of dimensionless time, t* = tU0 /D, 
for the numerical simulation and the 
experimental results of Engel (1967), Morton, 
Rudman and Liow (2000) and Liow (16G) 
(2001). 

Table 4 Water droplet diameters and impact velocities 
as used in the experiments of Engel, Morton 
and Liow for the deep-layer DLIP. 

Result D (mm) U 0 (m/s) We Fr Re 
Morton (2000) 2.90 2.50 251 219 7250 
Liow (2001) 3.77 3.78 748 386 14250
Engel (1967) 4.55 17.61 19597 6947 80125
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3.4.2 Results: shallow layer-spread factor 

As for the solid-liquid impact case, it is possible 
to calculate, as part of the numerical solution for a 
shallow layer droplet impact, the spreading radius 
(r) where the magnitude of velocity is a maximum 
at a given instant. Fig. 4 plots the spread factor, 
r* = r /D, with (non-dimensional) time t* = tU0 /D, 
obtained for the impact of a 2 mm water-like 
droplet onto a shallow layer of the same liquid of 
depth h = 0.3 mm (H = 0.15). See Table 5 for 
details. Numerical results are shown in a solid 
line (overlapping the dash-dotted and dotted lines) 
and experimental ones in a dashed line. This 
follows the tests of Josserand and Zaleski (2003) 
whose results are shown in a straight line 

,∗∗ = tr which is a well established experimental 
result for the impact radius at small times (Yarin 
and Weiss, 1995). 
 

 
Fig. 4 Log-log graph of radial spread factor, 

r* = r/D, as a function of dimensionless time, 
t* = tU0 /D, for numerical simulations and the 
experimental results of Josserand and Zaleski 
(2003). 

Table 5 Physical data used in the numerical solution 
for various droplet fluids in the shallow-layer 
DLIP. 

ρ 1 μ 1 ρ 2 μ 2 D U 0 h 
(kg/m3) (kg/ms) (kg/m3) (kg/ms) (mm) (m/s) (mm)

1000 0.02 2 0.0005 2.00 10 0.3 
1000 0.05 2 0.0005 2.00 10 0.3 
1000 0.10 2 0.0005 2.00 10 0.3 

 

Note that for this set of physical data (Table 5 
refers), the results are expected to lie close 
together. This is shown by the fact that the 

numerical results for the various Reynolds 
numbers overlap each other. 
Displayed in Fig. 4 is a comparison of the 
experimentally obtained spread factor ∗∗ = tr  
with the numerical results. Clearly, the numerical 
simulation has captured the variation of the 
spread factor as a function of time (in this case, 
the relationship appears to be linear as the lines 
are all straight lines). The two results appear to be 
in good agreement. Our numerically calculated 
spread factor is also independent of the Reynolds 
number (droplet viscosity), which is in agreement 
with the experimental result. In this case, 
We = 8000 so that surface tension should play 
little role over the times considered. Most likely, 
it is the very small domain size used which 
affected the results through the solid wall 
boundaries. 

4. CONCLUSIONS 

In this paper, the GMPPS method has been 
adopted to solve the incompressible Navier-
Stokes equations both for the constant density and 
variable density cases. The constant density case, 
with a given exact solution, was used to obtain 
accurate error measures. The variable density 
version is used to study multiphase flow problems 
including the impact of a fluid droplet onto solid 
and liquid surfaces. 
We have implemented the pressure corrections of 
Brown, Cortez and Minion (2001), in an 
approximate Godunov projection method, for the 
case of variable density multiphase flows and 
confirmed the method's ability to accurately and 
robustly solve multiphase flow problems. 
The computational results demonstrate that the 
GMPPS formulation can accurately solve the NS 
equations up to second-order accuracy. Given that 
the resolution of the current computational work 
is limited by the available computational 
resources, the results presented here clearly 
demonstrate that the GMPPS formulation has a 
great potential to be used to solve the droplet-
solid and droplet-liquid impact problems. It is 
expected that an extension of the current method 
to allow outflow boundaries at the sides and top 
of the domain will improve the results 
significantly. The addition of surface tension 
would also allow the study of more varied 
multiphase flow problems. 
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