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Abstract

The CFD modeling of two-dimensional multiphase flows is a useful tool in industry, although accurate modeling itself remains a dif-
ficult task. One of the difficulties is to track the complicated topological deformations of the interfaces between different phases. This
paper describes a marker-particle method designed to track fluid interfaces for fluid flows of at least three phases. The interface-tracking
scheme presented in this paper is the first part of a series of papers presenting our complete model based on a one-field Godunov marker-
particle projection scheme (GMPPS). In this part, we shall focus on the presentation of the interface-tracking scheme and the kinematic
tests we conducted to examine the scheme’s ability to accurately track interfacial movements typified by vorticity-induced stretching and
tearing of the interface. Our test results show that for a set of carefully designed and commonly used error measures, relative percentage
errors never exceed 2% for all of the tests and grid sizes considered, provided a sufficient number of marker particles are used. We shall
also demonstrate that the method is of second-order accuracy and the interface transition width remains constant never exceeding three
cell widths.
Crown Copyright � 2007 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Typically, physical interactions in the natural world as
well as in industry demonstrate a need to study complex
multiphase flow problems. For example: water-jet impinge-
ment cooling [1], the production of non-skid galvanised
steel surfaces through water spray impact [2] or cavity
filling in compression molding of polymeric resins [3] are
typical problems in industry; the splash of water droplets
[4] and the breaking of waves [5] are two in the natural
world. A common feature of all of these seemingly quite-
different problems is the presence of a free surface in the
flow and the dynamical interaction of two or more immis-
cible fluids at their mutual interfaces.

While experimental studies provide valuable data and
physical understanding of such multifluid systems they also
present some difficulties. For example: probes can interfere
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with the flow and multifluid systems can be optically opa-
que [6], which make such flows notorious for their prob-
lems in setting up fully controlled physical experiments
[7]. Thanks to major developments in both algorithm con-
struction and computer power the simulation of, at least,
two-phase flows, an aspect of computational fluid dynam-
ics (CFD), is now almost routine.

Currently, it is the examination of very complex systems,
where it is necessary to follow the evolution of a large
range of scales for a long time, that presents the greatest
challenge [7]. The goal of this and the following paper, Part
II, is to construct an accurate, high fidelity (physically
meaningful) and robust numerical model which is capable
of solving multiphase flows. While the presented approach
has great potential to be extended to three-dimensional
cases, we shall only present, in this series of papers, the
fundamental concept of the approach and focus on the dis-
cussion of some two-dimensional numerical test results.
Extension to three-dimensions is currently being worked
on and the results shall be presented in forthcoming papers
upon their completion.
r Ltd. All rights reserved.
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In the case of multiple immiscible fluids, interfaces are
present as material discontinuities in the physical proper-
ties of the fluids in contact. This is the classical sharp inter-
face model of fluid mechanics where the interface is a
surface of zero thickness. In contrast to sharp interface
models, models which inherently describe both the bulk
phases as well as the interface structure, are often called
single domain or one-field models and do not require the
direct application of boundary conditions at the interface.
Rather, the interfacial conditions are built into the govern-
ing equations [8]. The one-field formulation provides a uni-
form description of multifluid flow so that the total fluid
dynamical system is represented by a single mass and
momentum conservation equation as well as a set of advec-
tion equations for each (scalar) component fluid phase
present in the domain [8]. Material properties are recovered
from a phase indicator function, usually the volume frac-
tion. The one-field formulation is now commonly used
for solving multiphase flow problems as it possesses certain
advantages over the older two-fluid approaches [9] and is
used in this paper.

Incompressible fluids are dominated by the solenoidality
constraint, which must be obeyed both within the domain
as well as at the boundaries for all time [10]. The greatest
difficulty in numerically solving the unsteady incompress-
ible Navier–Stokes (NS) equations, in primitive variable
form, arises from the intimate coupling of the velocity
and pressure [11]. One way to decouple the pressure from
the velocity field is to use the momentum equations to con-
struct a non-solenoidal intermediate velocity field which is
then orthogonally projected onto the nearest div-free sub-
space. In this paper we make use of such an approximate
projection method in combination with a high order
Godunov discretisation of the non-linear term in the NS
equations. A discussion of projection methods and a
detailed description of the approximate projection method
used in this series of papers is given in [12].

The ability to accurately ‘track’ an interface of arbitrary
topology which is advected with the flow is crucial to any
numerical model involving multiphase flows. Any such
numerical method must be able to correctly predict the
position of the interface while maintaining, as much as pos-
sible, its sharpness. This represents the geometry of the
motion, or the interfacial kinematics [8] and will be the
focus of this paper.

In general, the interface between two immiscible fluid
phases is either explicitly tracked or implicitly captured.
So-called interface tracking methods explicitly track the
interface by retaining a position history of discrete points
lying on the interface and solving a Lagrangian equation
of motion [13]. On the other hand interface capturing meth-
ods ‘track’ the interface by assigning a scalar step or indi-
cator function, often the volume fraction. As the fluid is
immiscible and incompressible, the interface is passively
advected with the flow [14] and a scalar transport equation
is used to update the indicator function in an Eulerian
manner.
Exact interface information is not contained in captur-
ing methods; the interface location is identified through
the indicator function, which is a field variable within the
whole of the domain rather than just at the interface [13].
Although purely Lagrangian techniques allow the accurate
tracking of the interface without smearing (numerical diffu-
sion that causes the interface to become progressively
wider), the method becomes too expensive in calculation
time and requires constant remeshing when the interface
undergoes large deformation [8].

On the other hand Eulerian methods allow large interfa-
cial deformations to take place while maintaining accuracy
and are easily extended to deal with multiple interfaces
[15]. Their main difficulty lies in locating the interface accu-
rately. Examples include the volume-of-fluid (VOF) method
[16] and its successors [17–19]. Although VOF methods are
topologically robust, possess excellent mass conservation
and are easy to implement, they are prone to ‘numerical
surface tension’, which, like physical surface tension,
smoothes high curvature regions. However, unlike real
physical surface tension, the smoothing of high curvature
regions due to ‘numerical surface tension’ is artificial and
is a consequence of the numerical approximation of the
interface geometry coupled with volume conservation [13].
Therefore, it numerically disperses or merges fluid chunks
[20].

An early Eulerian method is the marker-and-cell (MAC)
method where massless marker particles are used to iden-
tify or ‘mark’ an individual fluid, usually by the volume
fraction [21]. Although the method can deal with any num-
ber of interacting fluids and deforming interfaces the inter-
face may be smeared and particles may accumulate in
portions of the grid hindering resolution in other regions
[15]. The use of particles in conjunction with a grid such
as the MAC method has been extended to so-called parti-
cle-in-cell (PIC) methods [22]. An underlying Eulerian grid
is used to compute field variables, such as pressure and
velocity, while material information, such as mass and vol-
ume, is transported from cell to cell by the particles. The
PIC method is able to deal with colliding interfaces which
undergo large distortions although a large amount of
numerical diffusion may arise. As well, numerical noise
arises because a finite number of particles must be used
[23]. In addition, multistreaming can result when two par-
ticles at the same point possess two different velocities [24]
and the ringing instability is caused when particles possess
more degrees of freedom than is present in the grid [25].
The ability of particle-mesh methods to separate the treat-
ment of flow variables, such as pressure and velocity,
within an Eulerian grid while advecting fluid identity in a
Lagrangian manner, prompted Rider and Kothe [26] to
improve on the older MAC method and make use of the
advantages of PIC. In the marker-particle (MP) method
[27] massless particles act as markers of fluid identity or
the ‘colour’ as in the MAC method.

As in PIC the particles carry a position within the
domain and are assigned an interpolated particle velocity
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from the grid values thereby avoiding multistreaming. The
domain is filled with particles, each carrying its own colour
which, after having been transported to its new position, is
used in conjunction with surrounding particles in a
weighted average to reconstruct the grid colour at each
time step [23]. Colour information is transferred one way
only from the particles to the grid so that numerical diffu-
sion is almost eliminated other than interpolation errors
caused by the transfer. A relatively high number of parti-
cles must be used so that numerical noise is kept to a min-
imum. Higher order interpolation functions are used to
lessen problems due to the ringing instability. Unlike ear-
lier VOF methods there is no diffusion or dispersion to
destroy interface information so that the method is not
subject to numerical surface tension [27].

While many natural processes, for example the splash of
a raindrop, can be represented as two-phase flows, the
computational modeling of industrial problems may
require the accurate numerical solution of interfacial flow
problems of more than two interacting fluid phases. One
of the aims of this series of papers is to construct a multi-
phase flow algorithm which is more than capable of dealing
with typical industrial problems which have to accurately
track the interfaces of at least three immiscible fluid phases.
The marker-particle method is, at least potentially, ideally
suited to track the motion of more than two phases. While
the MP method has been used to model two-phase flows,
its ability to accurately track at least three fluid phases
has not been adequately studied. In addition, since the
MP method has not been fully documented, a second goal
of this paper is to clarify the construction of the method in
some detail. Lastly, a kinematic study of the MP method,
involving two-phase flows with imposed velocity fields
which translate, rotate, stretch and eventually tear fluid
bodies, forms the basis of an analysis of the tracking ability
of the method and represents the third aim of this paper.

The combination of a sophisticated higher order Godu-
nov (approximate) projection method with the marker-par-
ticle method gives this the name: Godunov marker-particle
projection scheme (GMPPS). Part I, the current paper,
describes the kinematics of the GMPPS whereas Part II
[12] studies the dynamical aspects. The remaining paper
is organized as follows. In Section 2, some relevant details
of the marker-particle method are provided. In Section 3,
some numerical test results are presented to demonstrate
how the present approach handles large kinematic defor-
mation of interfaces. Our conclusions follow in Section 4.

2. The marker-particle method

The marker-particle method is a Lagrangian scheme to
track fluid colour. An individual fluid colour indicates a
particular fluid, that is, one ‘phase’ of the multiphase flow
problem. This is the phase indicator function, designated
C. Although marker particles act as markers of the pres-
ence of a particular fluid they do not explicitly track the
interface. They are not assigned to lie along a particular
interface and so only track it implicitly. However, since
the particles carry fluid identity at scales smaller than the
computational grid they strongly maintain individual fluid
identity for all time.

For multiphase flow involving m fluids, m sets of mar-
ker particles are assigned within the domain, one set for
each individual fluid. Each particle, in each set, is given
an initial colour value of either one or zero depending on
whether the fluid is present there or not. The velocity of
each particle is assigned by interpolating surrounding grid
velocity data at each time step. The particles are advected
with these velocities by solving the equation of motion
u ¼ dx=dt for one full time step. After advection is com-
plete particle colour information is interpolated back to
the grid to construct updated grid densities and viscosities
which are used in the next time step of the NS solution
algorithm.

2.1. The computational domain

The solution of the NS equations takes place in a
domain defined by X ¼ fðx; yÞ : X min < x < X max;
Y min < y < Y maxg with boundaries along the lines
x ¼ X min, x ¼ X max, y ¼ Y min and y ¼ Y max. The domain is
discretised using a two-dimensional Eulerian grid made
up of computational cells with centres ðxi; yjÞ, where

xi ¼ x1
2
þ i� 1

2

� �
Dx; yj ¼ y1

2
þ j� 1

2

� �
Dy ð1Þ

as well as vertex nodes ðxi�1=2; yj�1=2Þ and cell edges
ðxi�1=2; yjÞ, ðxi; yj�1=2Þ, where

xi�1
2
¼ x1

2
þ ði� 1ÞDx; yj�1

2
¼ y1

2
þ ðj� 1ÞDy ð2Þ

in a computational domain with integer counters
i ¼ 1; 2; 3; . . . ; I ; j ¼ 1; 2; 3; . . . ; J such that the boundary
lines x ¼ X min, x ¼ X max, y ¼ Y min and y ¼ Y max are defined
along cell edges:

x1
2
¼ X min; xIþ1

2
¼ X max; y1

2
¼ Y min; yJþ1

2
¼ Y max ð3Þ

and the space steps are given by

Dx ¼ X max � X min

I
; Dy ¼ Y max � Y min

J

2.2. Initialisation of particle position and colour

For each fluid phase a set of marker particles is required.
Each marker particle (p) is initially located at position
ðxp; ypÞ. Every marker particle of the mth set is assigned a
colour Cm

p ¼ Cmðxp; ypÞ, being an integer value of either
one or zero, depending on whether that particle lies within
the mth fluid or not, respectively. That is

Cm
p ¼

1 if particle p is located in fluid m

0 if particle p is not located in fluid m

�
ð4Þ

This is shown diagrammatically for the case of three-phase
flow in Fig. 1.
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Fig. 1. The allocation of fluid colour Cmðxp; ypÞ in a computational cell, containing three fluids, m ¼ 1; 2; 3, requiring three sets of marker particles, one for
each fluid involved.
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Each particle now possesses a particular colour value
which is permanently assigned for the entire duration of
the calculation.
2.2.1. Initial particle positions

Particles are positioned in the entire domain by assign-
ing a particular number within each computational cell.
This can easily be done through assigning particle positions
in a similar way as was done for cell centres. This ensures
particles are regularly spaced within each cell. It is useful
to have at least some particles aligned at cell edges so
boundary data may be accurately tracked.
2.2.2. Initial particle colour

Initially, the particles are assigned a colour depending
on whether they lie inside or outside a particular fluid,
see Fig. 1. Each fluid is defined through some function of
position, i.e. f ¼ fmðx; yÞ, for the mth fluid. For example,
consider the initial condition of a droplet of fluid one trav-
eling through another fluid, two, and eventually impacting
a third fluid, three, shown in Fig. 2.

For the case of Fig. 2 a typical set of functions might be,
for fluid one

f1ðx; yÞ ¼ fðx; yÞ : ðx� x0Þ2 þ ðy � y0Þ
2
6 R2g

for a circle with centre located at ðx0; y0Þ and of radius R.
Similarly, fluid three could be defined by

f3ðx; yÞ ¼ fðx; yÞ : 0 6 x 6 X ; 0 6 y 6 Hg
x

y

XO

Y

H

2

3

1

R

y0

x0

Fig. 2. The initial condition of a droplet (fluid 1)-layer (fluid 3) impact
problem involving three-phase flow with ambient fluid 2.
for a layer of height H measured from the line y = 0.
Particle colours may then be assigned as

C1
p ¼

1 if ðxp � x0Þ2 þ ðyp � y0Þ
2
6 R2

0 otherwise

(

C3
p ¼

1 if yp 6 H

0 otherwise

�

NB: Since at any position and time the particle colour is
one for one of the fluids and zero for the other two, then
C1

p þ C2
p þ C3

p ¼ 1. So that in general for m fluids:

Xm

k¼1

Ck
p ¼ 1 ) Cm

p ¼ 1�
Xm�1

k¼1

Ck
p

so that given m fluids only m � 1 are needed to fully define
the initial particle colours over the whole domain.

2.3. Particle kinematics

As part of the solution algorithm of the NS equations
grid velocity data is given both at cell centres at time tn

i.e. un
i;j and vn

i;j and, through the Godunov algorithm, time
centred at cell edges, i.e. unþ1=2

i�1=2;j and vnþ1=2
i;j�1=2. These values

are used to interpolate velocity values from the grid to
the particles.

2.3.1. Cell to particle velocity interpolation
Cell to particle interpolation is carried out with the use

of a bilinear weighting function Sðx� xi; y � yjÞ [27] from
the cell coordinates ðxi; yjÞ to the point (x,y) by Eq. (14)
of Appendix A.1:

Sðx� xi; y � yjÞ ¼
1� x�xi

Dx

�� ��� �
1� y�yi

Dy

��� ���� 	
if 0 6 x�xi

Dx

�� ��; y�yi
Dy

��� ��� 6 1

0 otherwise

8>>><
>>>:

ð5Þ

this is equivalent to selecting those cell contributions lying
within one cell width of the coordinate point (x,y). A par-
ticle will always be located within a region shared by four
other grid cells, see Fig. 3, where the cell centres ðxi; yjÞ,
ðxiþ1; yjÞ, ðxi; yjþ1Þ and ðxiþ1; yjþ1Þ all lie within the square
with area 4DxDy surrounding the particle.

The cell to particle velocity interpolation u xn
p

� 	
for a

particle at xn
p; y

n
p

� 	
at time tn is then given by the expres-

sions, using Eq. (13)
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Fig. 3. Shaded area (square) surrounding the particle at position ðxp; ypÞ
and covering the grid cells with centres ðxi; yjÞ, ðxiþ1; yjÞ, ðxi; yjþ1Þ and
ðxiþ1; yjþ1Þ used to interpolate velocity grid data to the particle.

Table 1
Table of possible particle overshoot and reflection back into the domain

Overshoot Reflection into domain Periodic addition

xp > X max xp ! X max � ðxp � X maxÞ xp ! X min þ ðxp � X maxÞ
xp < X min xp ! X min þ ðX min � xpÞ xp ! X max � ðX min � xpÞ
y > Y y ! Y � ðy � Y Þ y ! Y þ ðy � Y Þ
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uðxn
p; y

n
pÞ ¼

XJ

j¼1

XI

i¼1

S xn
p � xi; yn

p � yj

� 	
un

i;j

v xn
p; y

n
p

� 	
¼
XJ

j¼1

XI

i¼1

S xn
p � xi; yn

p � yj

� 	
vn

i;j

ð6Þ

Similarly, the cell to particle velocity interpolations

u xnþ1=2
p

� 	
for the time centred velocities are

u xnþ1=2
p ; ynþ1=2

p

� 	
¼
XJ

j¼1

XI

i¼1

S xnþ1=2
p � xi; ynþ1=2

p � yj

� 	
unþ1=2

i;j

v xnþ1=2
p ; ynþ1=2

p

� 	
¼
XJ

j¼1

XI

i¼1

S xnþ1=2
p � xi; ynþ1=2

p � yj

� 	
vnþ1=2

i;j

ð7Þ
here the time centred velocities at cell centres were calcu-
lated from time centred cell edge velocities as unþ1=2

i;j ¼
unþ1=2

i�1=2;j þ unþ1=2
iþ1=2;j

� 	

2 and vnþ1=2

i;j ¼ vnþ1=2
i;j�1=2 þ vnþ1=2

i;jþ1=2

� 	.
2.

2.3.2. Particle advection

Particles are advected over a full time step although, in
order to make use of the grid velocities at the current and
time centred values, a predictor corrector procedure [27] is
used to solve u ¼ dx=dt. That is

(1) Predict: to the new time centred particle positions
xnþ1=2

p ; ynþ1=2
p

� 	
by computing:
p max p max p max p min p max

yp < Y min yp ! Y min þ ðY min � ypÞ yp ! Y max � ðY min � ypÞ
xnþ1=2
p ¼ xn

pþ
Dt
2

u xn
p;y

n
p

� 	
; ynþ1=2

p ¼ yn
pþ

Dt
2

v xn
p;y

n
p

� 	
ð8Þ
x = X

x xp
p
n-1

n

overshoot

x = X

p
n

X    - (x  - X   )n
p

reflection

xn
p

maxmax

maxmax

x  - Xmax
n
p

y =

yp
n-1

ove

Fig. 4. Particle overshoot for the boundaries at (a) x ¼ X max,
(2) Correct: to the new updated particle position
xnþ1

p ; ynþ1
p

� 	
by computing:� 	
 Y

y

rshoot

n

max

y   - Yn
p

no-slip
xnþ1
p ¼ xn

p þ Dt u xnþ1=2
p ; ynþ1=2

p ;

ynþ1
p ¼ yn

p þ Dt v xnþ1=2
p ; ynþ1=2

p

� 	
ð9Þ
2.3.3. Particle boundary conditions

It is possible that particles near the boundary at one
time step may overshoot it in the next one. In that case par-
ticle position xp could be one of four possible cases:
xp > X max, xp < X min, yp > Y max and yp < Y min for each of
the x and y particle coordinates.

(1) No-slip conditions: On approaching the boundary the
fluid velocities there approach zero. The simplest way
to impose this boundary condition is to reflect the
particle back into the domain by the amount it has
exceeded it.

(2) Periodic conditions: For periodic conditions the parti-
cle must exit the domain and appear out of the oppo-
site face by the amount it exceeded the first boundary.

Table 1 shows the amount of particle overshoot and the
remedy for both no-slip and periodic conditions.

These situations are shown in Fig. 4 for the case of a
particle overshooting the x boundary at x ¼ X max and the
y boundary at y ¼ Y max for (a) no-slip conditions and (b)
periodic conditions.
2.4. Updating the colour function

As part of the solution of the NS equations in a multi-
phase flow problem the grid density and viscosity must
p
n

y = Y

Y    + (y  - Y   )n
p

periodic addition

yn
p

min

maxmin

max

boundaries and (b) y ¼ Y max, periodic boundaries.
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be calculated at each new time step. Updated grid densities
and viscosities are calculated via Eq. (11) which require the
updated grid volume fraction Cm;nþ1

i;j of the mth fluid. After
each particle has been advected to its new position the fluid
colour information Cm

p , which had been assigned to it ini-
tially, has to be interpolated back to the grid cell as the grid
volume fraction. This may be done using the previously
defined bilinear weighting function S so that the updated,
cell centred, colour function for the mth fluid colour
Cm;nþ1

i;j is given by

Cm;nþ1
i;j ¼

PTNP
p¼1 S xnþ1

p � xi; ynþ1
p � yj

� 	
Cm

pPTNP
p¼1 S xnþ1

p � xi; ynþ1
p � yj

� 	 ð10Þ

where the sum is over the total number of particles (TNP)
in the domain. This is an averaging of particle information
to the cell centre with each particle having a weight in a
grid cell of Sðxp � xi; yp � yjÞ [27]. This process is shown
in Fig. 5.

Although initial particle configurations are very simply
ordered (equi-spaced) the dynamics of the flow imply that,
over time, particle configurations will become disordered.
This makes the sums in (10) essential for keeping up with
the continuous deformation of the interface, especially
when it has suffered large deformations due to the drastic
movement of all tracking particles. For this reason, a sim-
ple summation over known nearby particles will not work.
Either the summation is taken over the whole set of parti-
cles or a search algorithm needs to be designed and imple-
mented to track down only those particles within range of
the interpolation function so that the summation is con-
ducted only over these particles. However, the additional
computational effort involved in the search algorithm is
not compensated for by the time saved using a partial
sum and thus we have decided to adopt the former
approach.

Note that each individual fluid phase m, represented as a
particle p with colour Cm

p , is distinctly separate from other
fluid colours and as such do not explicitly interact. It is pos-
sible that some particles of different colour may overlap
each other at a fluid interface through numerical error.
(x ,y )i j

Fig. 5. Only those particles (open circles) within the shaded area (square),
surrounding the cell centred at ðxi; yjÞ, are used to interpolate particle
colour data to the cell centre.
As the summation in Eq. (10) is carried out over individual
particles this does not present a problem because only
those particles that belong to the same fluid will be summed
over.

One should notice the difference between Eqs. (6) and
(10) as the interpolation function in the latter has been nor-
malised. The reason for this normalisation process is that
the interpolation functions derived for the grid-to-particle
interpolation cannot be directly applied to the interpola-
tion process associated with particles-to-grid as these func-
tions were derived based on a fixed number of grid points,
see Appendix A.1. For the particle-to-grid interpolation
process, the number of particles involved may now be other
than four and thus these weight functions, developed for
the process of interpolating the particle velocity field, must
be weighted properly again. Strictly speaking, a new inter-
polation function, which depends on the number of parti-
cles present, needs to be used for the particle-to-grid
interpolation. However, this would be computationally
too expensive because the number of weight functions
would vary from one grid point to another, and the calcu-
lation updating these weight functions at each grid point
implies a considerable increase of computational effort.

For three-phase flow:

C1;nþ1
i;j ¼

PTNP
p¼1 S xnþ1

p � xi; ynþ1
p � yj

� 	
C1

pPTNP
p¼1 S xnþ1

p � xi; ynþ1
p � yj

� 	 ;

C3;nþ1
i;j ¼

PTNP
p¼1 S xnþ1

p � xi; ynþ1
p � yj

� 	
C3

pPTNP
p¼1 S xnþ1

p � xi; ynþ1
p � yj

� 	

and C2;nþ1
i;j may be updated as C2;nþ1

i;j ¼ 1� C1;nþ1
i;j � C3;nþ1

i;j .
Using these values, which represent the cell volume frac-
tions occupied by each fluid, the cell density and viscosity
may be updated as

qnþ1
i;j ¼ C1;nþ1

i;j q1 þ 1� C1;nþ1
i;j � C3;nþ1

i;j

� 	
q2 þ C3;nþ1

i;j q3

lnþ1
i;j ¼

C1;nþ1
i;j

l1

þ
1� C1;nþ1

i;j � C3;nþ1
i;j

� 	
l2

þ
C3;nþ1

i;j

l3

0
@

1
A
�1 ð11Þ

where the qi’s and li’s are the constant densities and viscos-
ities in each fluid away from the interfaces.

2.5. The MP algorithm

The marker-particle algorithm reads as follows:

(1) Initialisation at t = 0:
(a) Assign a set number of particles per cell, with a

total number, TNP, in the whole domain.
(b) Assign an initial particle colour Cm

p (Eq. (4)) for
each fluid m using analytical functions fmðx; yÞ
defining the mth initial fluid region.
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(c) Use the particle colour data Cm
p just obtained to

construct the grid cell initial colour data Cm;0
i;j

from Eq. (10) for each fluid m. Then initialise
the density and viscosity as
q0
i;j ¼ C1;0

i;j q1 þ 1� C1;0
i;j � C3;0

i;j

� 	
q2 þ C3;0

i;j q3

l0
i;j ¼

C1;0
i;j

l1

þ
ð1� C1;0

i;j � C3;0
i;j Þ

l2

þ
C3;0

i;j

l3

 !�1
(2) For time step tn, n P 0:
(a) Given the initial cell centred and time centred

edge velocities: un
i;j, vn

i;j, unþ1=2
i�1=2;j and vnþ1=2

i;j�1=2 interpo-

late velocities to all particles, i.e. the values

u xn
p; y

n
p

� 	
, v xn

p; y
n
p

� 	
, u xnþ1=2

p ; ynþ1=2
p

� 	
and

v xnþ1=2
p ; ynþ1=2

p

� 	
, using Eqs. (6) and (7).

(b) Solve the equation of motion, using Eqs. (8) and
(9):
xnþ1=2
p ¼ xn

p þ
Dt
2

u xn
p; y

n
p

� 	
;

ynþ1=2
p ¼ yn

p þ
Dt
2

v xn
p; y

n
p

� 	
xnþ1

p ¼ xn
p þ Dt u xnþ1=2

p ; ynþ1=2
p

� 	
;

ynþ1
p ¼ yn

p þ Dt v xnþ1=2
p ; ynþ1=2

p

� 	

(c) Interpolate the new grid centred colour function

Cm;nþ1
i;j from advected particle colours Cm

p at new

particle positions xnþ1
p ; ynþ1

p

� 	
using Eq. (10).

(d) Update density and viscosity using the new cell
centred colour functions with Eq. (11):
qnþ1
i;j ¼ C1;nþ1

i;j q1 þ 1� C1;nþ1
i;j � C3;nþ1

i;j

� 	
q2 þ C3;nþ1

i;j q3

lnþ1
i;j ¼

C1;nþ1
i;j

l1

þ
1� C1;nþ1

i;j � C3;nþ1
i;j

� 	
l2

þ
C3;nþ1

i;j

l3

0
@

1
A
�1
(e) Store old time particle positions xnþ1
p ; ynþ1

p

� 	
along with the associated particle colour Cm

p at
each position and for each fluid. Increment the
time step, n! nþ 1, and go to step 2(a).
3. Benchmark testing and discussion

Rigorous test problems exist for methods such as con-
tinuum advection schemes, however, no such benchmark
tests are as yet available to track the advection of disconti-
nuities present, for example, at interfaces between two
immiscible fluids [28].

Typically, the solenoidal velocity field arising from the
solution of multiphase flow problems will advect the flow
in various ways. The simplest of these is a velocity field
which merely translates fluid elements. The second slightly
more complicated velocity field is one which rotates fluid
elements. These two kinds of velocity field, translation
and solid body rotation, represent simple advection which
does not significantly disrupt initial fluid integrity. It is at
least a necessary condition that a robust interface-tracking
algorithm is able to admit such simple advection tests with-
out significant distortion or degradation of fluid interfaces.
Even with such restrictive constraints on the velocity field it
is important to note that the achievement of good transla-
tion and rotation of a step function on an Eulerian mesh is
still a difficult task [29].

Once an interface-tracking scheme has passed these two
fundamental tests more serious tests with flows near inter-
faces possessing strong vortical content are required.
Stretching, shearing, fluid merging and break-up are all
possible in realistic multiphase flows [29]. A second series
of imposed velocity fields was used to study the ability of
the method to withstand changes in interface topology.
The first imposed a shearing flow which stretches fluid ele-
ments into a thin continuous filament that spirals towards
the centre of a vortex. It was taken from the well-known
vortex-in-a-box problem. The second severely deforms ini-
tial fluid integrity by trapping fluid within multiple separate
vortices [26]. Both are representatives of interfacial flow in
real physical systems such as the Rayleigh–Taylor and Kel-
vin–Helmholtz instabilities [28].

3.1. Advection tests

When an exact solution is not known one way in which
quantitative error measures are possible is to time-reverse
the flow after half of the calculation period so that it
returns to its initial state at the end of the full calculation
period. A comparison of the initial and final flows can then
be made. For all of the tests used in this paper the flow field
is time-reversed through a cosinusoidal time-dependence
with period T.

The four test cases are summarised in Table 2 under the
headings of simple advection: translation and rotation
velocity fields, and topology change: shearing flow and vor-
tex velocity fields, and were first used by Rider and Kothe
[26].

The current problem is the one stated in [26]: a fluid cyl-
inder of radius 0.15 is centred at the point (0.5,0.75) in a
unit computational domain. All boundaries are periodic.
Fluid one occupies the cylinder and fluid two the surround-
ings. Note that since this is a two-phase problem only one
grid colour function is needed so that C ¼ C1 (the drop)
and 1� C ¼ C2 (the surrounding fluid). Therefore we use
the symbol C to indicate the volume fraction of the drop.
Although these tests assess only two-phase flow they are
sufficient to study the method’s ability to track interfaces
in multiphase flows since particle advection and particle-
to-cell interpolation only ever deal with a single set of par-
ticles for each fluid.

In all of the test cases a time-reverse strategy is imple-
mented where each velocity field is multiplied by cosðpt=T Þ
producing a flow that reverses in time after a time T/2 and



Table 2
Velocity field specified for the four different test cases

Test type Velocity field The specified velocity field

Simple Translation uðx; yÞ ¼ ð1; 0Þ
Advection Rotation uðx; yÞ ¼ ðy � 1=2;�ðx� 1=2ÞÞ

Topology Shearing flow uðx; yÞ ¼ ð� sin2 px sin 2py; sin2 py sin 2pxÞ
Change Vortex uðx; yÞ ¼ sin 4pðxþ 1=2Þ sin 4pðy þ 1=2Þ; cos 4pðxþ 1=2Þ cos 4pðy þ 1=2Þð Þ
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returns to the initial state at t = T. The initial, t = 0, and
final, t = T, flow structure, e.g. the volume fraction, can then
be compared. The difference between the two produces an
absolute error whereas the ratio of absolute error to initial
state gives a relative error measure- ment.

An inferior interface-tracking algorithm will not be able
to pass these two final tests while a superior method should
maintain certain physical constants such as total domain
mass and drop volume. In addition, as a measure of numer-
ical diffusion, the interface thickness should remain
approximately constant. Finally, the method itself should
maintain second-order accuracy in space, this is tested by
studying error norms of the method using two progres-
sively finer spatial grids.
3.2. Error measures

The final to initial relative errors are measured in the L1

norm and are given by the ratio

kCN � C0k1

kCNk1

� 100

where CN is the final grid volume fraction after time-rever-
sal (at tN ¼ T ¼ NDt) and C0 the initial volume fraction.

Mass errors may involve a loss of mass from the total
mass of the original system, that is, the mass of the drop
and the mass of the surrounding fluid as compared to the
time dependent total domain mass calculated as an integral
of the drop volume fraction Cnðx; yÞ.

Drop fluid volume must of course also be conserved,
that is, for an initial drop volume of pR2 the time depen-
dent drop volume is calculated by integrating the drop vol-
ume fraction over the whole domain.

The region over which the grid volume fraction changes
from a value of one, in the drop fluid, to a value of zero, in
the surrounding fluid is here called the transition width.
This width should remain approximately constant no mat-
ter what flow field is applied. It is expected that this value
should be approximately one to two grid spacings wide, i.e.
h� 2h. This parameter is measured by comparing individ-
ual grid cells one of which (x,y) possess C = 1 and the sec-
ond of which (X,Y) has C = 0. The distance between these
two cells is then minimised provided it is greater than zero.
That is, the width is given by

min
06x;X ; y;Y61

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX � xÞ2 þ ðY � yÞ2

q
> 0
Note that since this calculation necessarily obtains the
smallest minimum at any one time this can change signifi-
cantly at each time step possibly undergoing discontinuous
jumps.

The order of accuracy of the method is required to be of
second order in space. By comparing the grid cell colour
function at the end of the time-reversed calculation to
the original fluid body for two different size grids an order
of accuracy may be calculated. Firstly, calculate the
numerically (n) obtained grid colour function, CðnÞh , on a
grid with h ¼ Dx ¼ Dy. Secondly, use the initial, ‘exact’
(e) solution evaluated on the same grid, CðeÞh , to calculate
the L1 error norm, i.e. EðhÞ ¼ kCðnÞh � CðeÞh k1 on that grid.
Then, repeat the procedure for a second, finer grid, i.e.
h/2, obtaining Eðh=2Þ. Finally, take log2 of the ratio of
errors to obtain the order of accuracy [30], which is
approximately

log2

EðhÞ
Eðh=2Þ

� �
ð12Þ

Note that these measures are defined on a given computa-
tional grid so that they make use of cell centred grid data
not particle data.
3.3. Results

The performance of the MP method is analysed quanti-
tatively for all four tests. Fig. 6 shows particle colour func-
tion plots for the shearing flow and vortex tests at t = 3
and t = 1, respectively showing how either field can induce
a most severe disruption of the original fluid body. This
represents the ‘exact’ solution since fluid elements, repre-
sented by particles, have been advected with the given ana-
lytic velocity field so that no numerical errors are
introduced as far as the particle colour function is con-
cerned. A quantitative assessment is made by comparing
relative percentage errors, for all of the advection fields,
for total domain mass and drop volume over the time of
the calculation. The variation in transition width is also
plotted as a function of time. In all cases a CFL number
of one is used (based on the maximum velocity in the
domain). Finally, an order of accuracy is determined from
L1 error norms.
3.3.1. Translation
Fig. 7a shows the variation in relative percentage error

with time for the translation of the original drop, up to



Fig. 6. Particle plots of the shearing flow and vortex fields at t = 3 and t = 1, respectively on a 1282 grid using 16 particles per cell.

Fig. 7. Relative percentage errors for the domain mass and drop volume variation in time using a 642 grid with 4 (solid line) and 16 (dotted line) particles
per cell for the (a) translation, (b) rotation, (c) shearing flow and (d) vortex velocity fields.
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t = 3, and a reverse of the velocity field (i.e. with T = 6) to
return the drop to its original position when t = 6. Note
that the right hand edge of the drop leaves the domain at
the right-hand-side boundary at about t = 0.37 and the left
hand edge of the drop leaves the domain at about t = 0.7.
Similarly, the drop, after having entered on the opposing
face, leaves the domain again at about t = 1.5 with the left
hand edge of the drop leaving and re-entering at about
t = 2.0. The drop is stationary at t = 3 after which it
reverses direction. Two sets of plots are shown for the cases
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of using 4 particles per cell (ppc) and 16 particles per cell,
respectively. For the 4 ppc case the initial mass and volume
error remains about 1.2%. On the other hand the results for
the 16 ppc case show a drop in mass and volume errors
down to 0.2%, which is very reasonable for the model-pre-
dicted results being used in engineering applications. The
drop in mass error, by six times, has clearly indicated that
the particle-to-cell interpolation is much more accurate
when more particles are used. One should also notice in
Fig. 7a that the mass errors are constant for most of the
time, except some occasional fluctuations. These fluctua-
tions are a result of the grid integral being less accurately
evaluated when the drop is leaving and re-entering the
computational domain. Clearly, when the number of parti-
cles per cell is increased to 16, the magnitude of the fluctu-
ation has been substantially reduced.

Fig. 8a shows the transition width over time for the
translating drop. The expected width is approximately
2h ¼ 0:03125 in the 642 grid. The 4 and 16 ppc cases both
show a constant value of 0.031. Given that the translation
flow field transports fluid elements exactly the transition
width remains constant since all elements are translated
equally.
Fig. 8. Transition width variation in time using a 642 grid with 4 (solid line)
(c) shearing flow and (d) vortex velocity fields.
3.3.2. Rotation

Fig. 7b shows the same error measures used for the
translation case except that the original drop has now been
rotated about the domain centre for a time of t = 3 after
which it reverses its direction and returns to its starting
position when t = 6 (using T = 2). Note that the drop never
leaves the domain and the fluctuations in mass error are
due to the number of particles used in the calculation.
The 4 ppc case shows approximately constant mass and
volume errors of 1.2% with the 16 ppc case dropping to
0.2%. This again shows a decrease in mass errors of six
times. Note that whereas the 4 ppc case shows some oscil-
lation about the mean value of the mass error the 16 ppc
case possesses virtually no such variation. This is a direct
product of an increase in the number of particles used in
the particle-to-cell interpolation.

Fig. 8b shows the variation in transition width over time
for the rotation test. Unlike the translation test there is
some variation in transition width which jumps discontin-
uously. For the 4 ppc case (average width 0.026) these
jumps are larger than for the 16 ppc case (average width
0.037). As the number of particles is increased the jumps
are smaller in size.
and 16 (dotted line) particles per cell for the (a) translation, (b) rotation,
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3.3.3. Shearing flow

Fig. 7c shows quantitative errors of the time-reversed
shearing flow solution over a period of T = 6. The 4 ppc
case shows a large increase in mass and volume error as
the initial drop is stretched out reaching a value as high
as 2.5% but dropping to about 0.5% at the half way point.
The graph is symmetric about this point retracing its course
for the remaining time. On the other hand the 16 ppc case
shows a much more even variation remaining approxi-
mately constant at about 0.5%. This happens when the
severely stretched fluid elements, whose individual particles
become widely separated when few are used, are no longer
able to correctly represent the grid volume fractions. As the
number of particles is increased this error is greatly
decreased, by a factor of 5, to a satisfactory level of less
than 1%.

Fig. 8c shows the transition width for the shearing flow
test with some variation in width at the start and finish of
the calculation time giving an average width of about 0.022
whereas the 16 ppc case produces 0.033. The variations are
not as severe as the rotation test possibly due to the
smoothness with which fluid elements are stretched.

3.3.4. Vortex test

For the time-reversed (with T = 2) vortex solution,
Fig. 7d, the previous situation for the shearing flow test
is exacerbated as the fluid elements are now not only
stretched but torn. As a result the 4 ppc case shows errors
as large as 7% with a reduction to about 1% for the 16 ppc
case. The relatively small differences seen at t = T/2, in
both the shearing flow (t = 3) and vortex (t = 1) mass
errors is due to the zero velocity reached at this point as
the flow is reversed.

The vortex test result of Fig. 8d shows significantly more
variation in transition width than any of the previous cases.
Remarkably the 4 and 16 ppc cases both show an almost
constant width of about 0.025 (on average) although the
16 ppc case undergoes more variation.

3.3.5. Dependence of width on number of particles

All of the advection tests except the translation test (see
Fig. 8) show that the average transition width for the 4 ppc
case is smaller than the 16 ppc case. This could be
accounted for by the likelihood that for the 4 ppc case only
a small number of particles possessing Cp = 1 contribute to
the grid volume fraction having 0 < Ci;j < 1 whereas for
the 16 ppc case even a single particle with Cp ¼ 1 will
induce a grid volume fraction greater than 0 so that there
will exist more cells having an intermediate volume fraction
(i.e. not 1 or 0). This will produce a wider transition width
than for the 4 ppc case. The translation test does not show
this difference because all particles are exactly translated by
the same amount.

3.3.6. Time-reversed flow
Fig. 9 shows the relative percentage error, in the L1

norm, of the grid volume fraction for the time-reversed
translation, rotation, shearing flow and vortex tests com-
pared to the initial condition as a function of grid size
(h ¼ 1=32; 1=64; 1=128). Note that the graph also shows
the convergence of the algorithm.

Note that for the translation test there is no improve-
ment as the grid is refined or as the number of particles
per cell is increased. This occurs since fluid elements are
translated exactly so that errors at the limit of double pre-
cision arithmetic, used in the code, are seen. This cannot
improve as the grid is refined. This is not the case for the
remaining flow fields. As expected the rotation test has
the lowest relative error of the remaining three tests. All
remaining tests show the same log–log slope as the grid is
refined. It is clear that for both the shearing flow and vor-
tex tests the time-reversed relative percentage errors are
small even for the coarsest grid shown, no larger than
2%. In addition, there is a logarithmic decrease in error
as the grid spacing is decreased. It is also evident that the
number of particles per cell used in the calculation does
not significantly effect this outcome. This is true since the
particles having been accurately advected resume their ini-
tial positions at the end of the cycle.
3.3.7. Order of accuracy

The order of accuracy for each test was calculated for
the time-reversed flow fields up to t = T for both the 4
and 16 particles per cell cases on h = 1/32, 1/64 and 1/
128 grids. The time-reversal period T is chosen to coincide
with that used in [28] to allow a comparison, especially
their Tables 2 and 3. Note that as the time-reversal period
increases the fluid body is allowed to evolve further away
from its initial configuration, at t = 0, so that it needs to
undergo more complicated topological change in order to
reconstruct correctly at t = T.

For the case of simple translation with a constant veloc-
ity field the MP method time-reverses the flow so exactly
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that the error obtained is already at the double precision
limit of 10-8 of the code for the coarsest grid used so that
a comparison between grids is not possible with the method
used in Eq. (12).

However, Tables 3–5 show the L1 error norms compar-
ing the time-reversed and initial flow for each grid and
number of particles used as well as the order of accuracy
in each case.

As expected the results of [28] for the rotation test, their
Table 8, show second-order accuracy as do those of Table 3
Table 3
The L1 error norms and order of accuracy for the rotation test using the time

Grid (4 ppc) E(h) (T = 1.0) Order (T = 1.0) E(h) (T = 2

322 2.31 · 10-7 4.82 · 10-7

2.87
642 3:16� 10�8 6:46� 10�8

2.75
1282 4:71� 10�9 9:51� 10�9

Grid (16 ppc)

322 2:33� 10�7 4:89� 10�7

2.93
642 3:06� 10�8 6:25� 10�8

2.78
1282 4:46� 10�9 8:99� 10�9

Table 4
The L1 error norms and order of accuracy for shearing flow using the time-re

Grid (4 ppc) E(h) (T = 0.5) Order (T = 0.5) E(h) (T = 2

322 9:48� 10�6 4:19� 10�5

2.77
642 1:38� 10�6 5:77� 10�6

2.90
1282 1:83� 10�7 7:69� 10�7

Grid (16 ppc)

322 9:50� 10�6 4:02� 10�5

2.83
642 1:33� 10�6 5:48� 10�6

2.92
1282 1:75� 10�7 7:09� 10�7

Table 5
The L1 error norms and order of accuracy for the vortex test using the time-r

Grid (4 ppc) E(h) (T = 1.0) Order (T = 1.0) E(h) (T = 2

322 4:51� 10�4 1:45� 10�3

2.63
642 7:27� 10�5 2:25� 10�4

2.89
1282 9:79� 10�6 2:98� 10�5

Grid (16 ppc)

322 4:59� 10�4 1:53� 10�3

2.73
642 6:90� 10�5 2:18� 10�4

2.88
1282 9:33� 10�6 2:85� 10�5
although the present results show an accuracy approaching
the limit of double precision arithmetic used in the code.

For the shearing flow and vortex tests a comparison is
possible to the results of Rider and Kothe [28]. For the vor-
tex test the periods T = 0.5, 2.0 and 8.0 were used identical
to that in [28], their Table 2. Their paper compared the
order of accuracy demonstrated in 322, 642 and 1282 grids
for the PLIC method. Whereas their results show mostly
second-order accuracy. Table 4 shows consistently high
second-order accuracy of the current model for both short
-reversed flow field for both 4 and 16 particles per cell

.0) Order (T = 2.0) E(h) (T = 4.0) Order (T = 4.0)

9.85 · 10-7

2.89 2.91
1:31� 10�7

2.76 2.78
1:91� 10�8

9:98� 10�7

2.97 2.98
1:26� 10�7

2.79 2.79
1:81� 10�8

versed flow field for both 4 and 16 particles per cell

.0) Order (T = 2.0) E(h) (T = 8.0) Order (T = 8.0)

4:29� 10�4

2.86 2.93
5:63� 10�5

2.91 2.98
7:13� 10�6

4:15� 10�4

2.86 2.94
5:42� 10�5

2.94 2.97
6:91� 10�6

eversed flow field for both 4 and 16 particles per cell

.0) Order (T = 2.0) E(h) (T = 4.0) Order (T = 4.0)

5:22� 10�3

2.69 2.57
8:80� 10�4

2.92 2.67
1:38� 10�4

5:43� 10�3

2.81 2.77
7:94� 10�4

2.94 2.93
1:04� 10�4
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and long periods. In addition, the individual error norms
are better than theirs by almost two orders of magnitude.

Table 5 shows the error norms and order of accuracy
data for the vortex test using time-reversal periods of
T = 1.0, 2.0 and 4.0. This test is more severe than the shear-
ing flow case and whereas the results of [28], their Table 3,
show that their T = 1.0 case is second-order accurate the
remaining results for T = 2.0 and 4.0 are only first-order
accurate. However, Table 5 again demonstrates consistent
second-order accuracy no matter the time-reversal period
or the number of particles used in the calculation.

It is interesting to note that the error norms obtained
from the rotation test are approximately of size 10�8

whereas the shearing flow test possesses an average error
norm around 10�6 and the vortex test average errors of
about 10�4. It can be seen that as the test itself becomes
more severe the errors increase by two orders of magnitude
although strictly still maintaining second-order accuracy
throughout.

As mentioned earlier the MP method does not strictly
adhere to solenoidality. That is, the interpolation of an
exactly divergence-free velocity field, discretised on the grid
as ui,j, does not carry over the div-free property from the
grid points to the field point (x,y). That is

r � uðx; yÞ ¼ r �
XJ

j¼1

XI

i¼1

Sðx� xi; y � yjÞui;j 6¼ 0

As particle velocities are required to advect fluid colour
information and these are interpolated from grid velocities
this implies that particles are given slightly incorrect veloc-
ity data. This is not a problem for the simple advection
tests such as translation and rotation but in the presence
of vorticity, i.e. for the shearing flow and vortex tests, the
particles may have velocities imposed on them which are
poor representations of the actual field variables [27].
Although this may seem to be a major shortcoming of
the method, in practice it has not been found to be a prob-
lem especially when a fine grid is used. The results of Figs. 7
and 9 show that mass is conserved up to 1% relative error
even for severe deformation and that these errors do not
appear to accumulate as fluid bodies are sheared due to
strong vorticity.
4. Conclusions

In this paper a marker-particle method is outlined with
the potential to track an arbitrary number of interacting
fluid phases. The paper concentrates on the ability of the
method to accurately track fluid interfaces for two-phase
flows by imposing solenoidal velocity fields which trans-
lated, rotated, stretched and deformed fluid bodies. In
order to perform error measurements based on an exact
solution the individual flows were time-reversed so that
fluid velocities reversed in sign returning the flow to its ini-
tial position after a period T. This allowed the known ini-
tial condition to be compared with the time-reversed result
so that typical error measures such as global grid mass and
volume conservation as well as interface transition width
and spatial order of accuracy could be computed.

The results have shown that, provided a sufficient num-
ber of particles are used, the method is able to accurately
track fluid interfaces with relative percentage errors no
greater than 1–2%. This remains true for flows which trans-
late, rotate, stretch and severely deform fluid bodies in the
presence of strong vorticity for all of the grid sizes tested.
In addition, the width of fluid interfaces, as demonstrated
by grid volume fractions, does not increase. Interface width
is constant at approximately two grid cell lengths for the
translation test while never exceeding three cell widths for
any of the other tests. It is also clear that the method is con-
sistently of second-order accuracy for all of the flow tests
studied no matter how much the fluid bodies were
deformed. This compares more than favourably to the
well-known PLIC method currently in common use.

While some doubts remain concerning the method’s
ability to accurately conserve mass the results have shown
that this does not appear to be a severe problem for the
tests so far conducted. Nonetheless, the construction of
interpolation functions which strictly adhere to solenoidal-
ity would ensure a superior method to the one presented
here. Although the MP method performs better than most
purely grid-based methods it does incur a cost in the num-
ber (and storage) of particles required to ensure good
performance.
Appendix A

A.1. Interpolation weighting function

Given a computational grid, defined earlier by Eq. (1)
and functional values Xi, j at each cell centre, we wish to
be able to interpolate data from these known values to
any point (x,y) lying in the domain, not necessarily on a
cell centre, vertex or edge.

Now, construct the interpolate X ðx; yÞ which is linear in
x and y, i.e.:

X ðx; yÞ ¼ a0 þ a1xþ a2y þ a3xy

with the ai’s real constants. This value will lie somewhere
within a region which has as its vertices the grid cell values
X i;j ¼ X ðxi; yjÞ, X iþ1;j ¼ X ðxiþ1; yjÞ, X i;jþ1 ¼ X ðxi; yjþ1Þ and
X iþ1;jþ1 ¼ X ðxiþ1; yjþ1Þ, as shown in Fig. 10. Now the data
at each cell centre is known so that we may write down four
equations in the four unknowns a0; a1; a2; a3:

X i;j ¼ a0 þ a1xi þ a2yj þ a3xiyj

X iþ1;j ¼ a0 þ a1xiþ1 þ a2yj þ a3xiþ1yj

X i;jþ1 ¼ a0 þ a1xi þ a2yjþ1 þ a3xiyjþ1

X iþ1;jþ1 ¼ a0 þ a1xiþ1 þ a2yjþ1 þ a3xiþ1yjþ1

construct the matrix equation with solution vector
ða0; a1; a2; a3ÞT:



X(x,y)

X X

XX

i,j

i,j+1

i+1,j

i+1,j+1

Fig. 10. Interpolation of a function value X ¼ X ðx; yÞ at the point (x,y)
using the functional data located at cell centres X i;j, X iþ1;j, X i;jþ1 and
X iþ1;jþ1.
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1 xi yj xiyj

1 xiþ1 yj xiþ1yj

1 xi yjþ1 xiyjþ1

1 xiþ1 yjþ1 xiþ1yjþ1

0
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1
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a0

a1

a2

a3

0
BBB@

1
CCCA ¼

X i;j

X iþ1;j

X i;jþ1

X iþ1;jþ1

0
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solving for the ai’s we get:

X ðx; yÞ ¼ 1� x� xi

Dx

� 	h i
1�

y � yj

Dy

� �� 
X i;j

þ x� xi

Dx

� 	 y � yj

Dy

� �
X iþ1;jþ1

þ x� xi

Dx

� 	
1�

y � yj

Dy

� �� 
X iþ1;j

þ 1� x� xi

Dx

� 	h i y � yj

Dy

� �
X i;jþ1 ð13Þ

this may be written using a weighting function S as

X ðx; yÞ ¼
XJ

j¼1

XI

i¼1

Sðx� xi; y � yjÞX i;j

where S is restricted so that only the four cell vertices above
are selected, i.e.:

S ¼ 1� x�xi
Dx

�� ��� �
1� y�yj

Dy

��� ���� 	
if 0 6 x�xi

Dx

�� ��; y�yj

Dy

��� ��� 6 1

0 otherwise

(

ð14Þ
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