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a b s t r a c t

The particle deficiency problem in the presence of a rigid wall for smoothed particle hydrodynamics (SPH)
is considered. The problem arises from insufficient information being available to perform accurate inter-
polation of data at particles located nearer to the boundary than the support of the interpolation kernel.
The standard method for overcoming this problem is based on the introduction of image particles to pop-
ulate the deficient regions and the use of linear extrapolation to determine the velocity of these image par-
ticles from that of fluid particles. A consistent treatment of boundary conditions, utilising the momentum
equation to obtain approximations to the velocity of image particles, is described. The method ensures
second order approximation of the boundary conditions. It is validated for Poiseuille and Couette flow,
for which analytical series solutions exist and shows second order convergence under certain conditions.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Smoothed particle hydrodynamics (SPH) is a Lagrangian mesh-
less method for obtaining numerical solutions to fluid flow prob-
lems [9]. In the SPH framework, the fluid is represented by a
collection of particles that are free to move. The system of partial
differential equations governing the fluid flow is replaced by
equations of motion for these particles. The approach, therefore,
is quite distinct from traditional methods in CFD that discretize
the governing continuum equations on a fixed grid of points or
elements using finite difference, finite element or finite volume
approximations.

SPH has a number of advantages and features that make it
attractive for use in CFD for certain classes of flow problems in
preference to traditional grid-based methods. Since SPH is a fully
Lagrangian technique, it is particularly well-suited for convec-
tion-dominated problems. Free surface problems and multiphase
flows are also easily handled using SPH without the need to explic-
itly track the interface. The similarity between SPH and molecular
dynamics simulation techniques means that it is often possible to
incorporate complex physics into the method. Complex geometries
can be handled relatively easily using SPH and therefore the meth-
od is comparatively straightforward to programme.

Another unique and attractive characteristic of the SPH method
is the harmonious combination of the Lagrangian formulation and
particle approximation which means that SPH particles not only
function as interpolation points, as do particles in other mesh-free
methods, but also carry material properties.

Although the SPH method was originally developed for astro-
physical applications [4], it has been extended and applied to a
wide range of problems in CFD such as free surface [8], multiphase
[10], geophysical [12] and viscoelastic flows [3]. In typical astro-
physical applications, SPH is used to model compressible fluids at
high Reynolds number ðRe P 103Þ [1]. On the other hand, the sim-
ulation of low Reynolds number incompressible flows required
some modification of the original SPH components such as the
treatment of viscosity, equation of state, kernel interpolation and
boundary conditions. Contributions to these developments were
made by Takeda et al. [19] and Morris et al. [11].

The essence of SPH is to choose a smoothing kernel, Wðr;hÞ (h
being the smoothing length), and to use it to localise a continuous
field through a convolution integral [6]. Such kernels usually pos-
sess a compact support radius, R, which is often chosen to be a
multiple of the smoothing length, e.g. R ¼ 2h. As SPH was devel-
oped for use in astrophysics, the satisfaction of boundary condi-
tions was not of immediate concern [15]. However, when the
technique was extended to simulate confined flows the implemen-
tation and satisfaction of boundary conditions became an issue
since the smoothing operation encounters kernel sum deficiencies
in the vicinity of solid walls [3]. More precisely, if the normal dis-
tance d between the no-slip boundary and the particle position, in
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Fig. 1, at which the interpolation is to be carried out, is less than or
equal to the support radius there is insufficient particle informa-
tion for an accurate calculation. Note that interpolation in SPH is
a smoothing operation in which the interpolation of particle values
is generally not equal to that of the dependent variable. Therefore,
it is simply not enough to set the velocity at boundary positions to
zero in order to enforce homogeneous boundary conditions [2].
Difficulties in enforcing the correct boundary conditions allow
the growth of errors at the boundary which eventually diffuse into
the domain leading to global inaccuracy. It is therefore necessary to
ensure boundary conditions are satisfied, at least to the order of
accuracy that is present in the method away from the boundaries.
Monaghan [9] first proposed replacing the boundary with particles
which interact with the fluid through repulsive boundary forces.
However, this approach is not simple to implement and, to realis-
tically model low Reynolds number flows, true no-slip boundary
conditions are needed [11]. Invariably this led to the use of virtual
or image particles which are introduced to overcome the particle
deficiency problem at boundaries.

In the approach of Morris et al. [11], the location of image (I)
particles remains constant in time with velocities assigned by lin-
ear extrapolation from the velocity of fluid (F) particles lying close
to the normal drawn between the boundary (W) and the image
particle. This is shown in Fig. 2a where the normal projection of
the image particle onto the boundary is not coincident with the
corresponding normal projection of the fluid particle onto the
boundary. In this case we say that the two normal projections

are offset. The ratio of the distance between the image particle
and the boundary dI compared to the distance between the fluid
particle and the boundary dF is not necessarily an integer, i.e.
dI=dF – m, for m an integer. The method may be summarised as
one in which the normal projections of image and fluid particles
onto the boundary are offset and dI=dF is, in general, non-integral.
A linear extrapolation of fluid particle information to image parti-
cles uses the weighted average

uI ¼ uF þ 1þ dI

dF

� �
ðuW � uFÞ: ð1Þ

The extrapolation error introduced by the fact that the normal pro-
jections from the image and domain particles onto the boundary are
offset is rectified in the work of Fang et al. [3] by creating a set of
fixed virtual (V) particles inside the domain so that the normal pro-
jections are not offset (see Fig. 2b). These extra virtual particles are
assigned velocities through interpolation from surrounding domain
particles [3]. In this method dI=dV is in general, also non-integral.
The extrapolation is given by

uI ¼ uV þ 1þ dI

dV

� �
ðuW � uV Þ: ð2Þ

Although the approaches based on image particles work and have
been used by many researchers they do require extra particles lying
outside the domain that extend as far as the support radius in order
to obtain the required accuracy. This means that, for large support
radii, a large number of image particles are needed. This approach
also relies on a weighted averaging which satisfies the boundary
conditions, e.g. for the first image particle beyond the boundary
when dI ¼ dF : uW ¼ ðuI þ uFÞ=2.

However, it is also possible to correct the kernel estimate in the
interpolation by separating particle contributions into those from
particles lying in the fluid, particles lying directly on the boundary
and those exterior particles needed to alleviate the deficiency of
particles near the boundary. Randles and Libersky [15] used this
approach without explicitly needing to make use of these exterior
particles but simply requiring them to satisfy the kernel estimate
of unity. While this approach avoids the need for the creation of
extra image particles, it is not clear how accurate this approach
is or if it is better than the image particle technique.

In this paper a new approach is advocated which resolves the
particle deficiency problem near no-slip boundaries in SPH
through a direct application of the Navier–Stokes equations on
the boundary without the use of artificial image particles. This
method is characterised by an integral extrapolation of particle
information to image particles and the normal projection of fluid
and associated image particles onto the boundary that are not off-
set. It is also significantly different from either of the other two ap-
proaches in that its image particles are always co-moving with a
corresponding fluid particle thereby allowing an exact reflection
without recourse to artificial virtual particles. In order to validate
this new approach the Poiseuille and Couette flow problems con-
sidered by Morris et al. [11] are used as benchmark problems.

In Section 2 the particular SPH model used in this paper is out-
lined. The algorithmic details follow closely those described in
Shao and Lo [17] and Sigalotti et al. [18]. Plane Poiseuille flow in
a channel and Couette flow between infinite plates is described
including the use of a body force, for Poiseuille flow, to represent
the pressure gradient in the flow. In Section 3 the new method is
described in detail as well as its accuracy and application to both
of the test cases. Section 4 displays the results of simulations for
both cases. The influence of the initial particle mesh spacing and
smoothing length on the accuracy of the approximation is investi-
gated. This allows the accuracy and order of convergence of the
method to be analysed. Section 5 summarises the main findings
of the paper.

fluid particles

fluid particles

R

no-slip

boundary

no-slip

boundary
d < R

particle deficiency

Fig. 1. Diagram showing the deficiency of particles outside a wall boundary for a
given compact support radius R.
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Fig. 2. The assignment of image particle velocities through extrapolation from fluid
particles inside the domain using the approach of (a) Morris et al. [11], offset, non-
integral reflection using fixed image particles; (b) Fang et al. [3], non-integral
reflection using fixed image and fixed virtual particles which are not offset and (c)
the approach of the authors: integral reflection using co-moving image particles,
also not offset.

F. Bierbrauer et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 3400–3410 3401



Author's personal copy

2. Governing equations and model problems

In smoothed particle hydrodynamics the fluid is represented by
particles which follow the fluid motion. Each particle carries mass,
velocity and other fluid quantities. The conservation equations
governing fluid dynamics are expressed as summation interpolants
using an interpolation function W that gives the kernel estimate of
the fluid variables at a point. The fluid property at a particle point
‘‘a” is evaluated by performing a weighted sum over surrounding
particles ‘‘b” lying within the support of the kernel

Wab ¼Wðrab;hÞ ¼
1

h2 g
rab

h

� �
;

where rab ¼ ra � rb and rab ¼ jrabj is the distance between particles
located at positions ra ¼ ðxa; yaÞ and rb ¼ ðxb; ybÞ, and h is the so-
called smoothing length defining the support of the interpolation
function g. In SPH the interpolation of any function f at position r
is based on the kernel estimate

f ðrÞ ’
Z

f ðr0ÞWðr� r0;hÞdr0; ð3Þ

where dr0 is a volume and where the delta function in the identity
f ðrÞ ¼

R
f ðr0Þdðr� r0Þdr0 has been replaced by a kernel function

Wðr� r0;hÞ. Such an estimate is a good one provided that the kernel
function reduces to the delta function when limh!0Wðr� r0;hÞ ¼
dðr� r0Þ, is normalised such that

R
Wðr;hÞdr ¼ 1 and has compact

support on a disk D ¼ fr : jrj < Rg, i.e. Wðr;hÞ ¼ 0 for r 2 D ¼
IR2 n D. The continuous volume integral (3) may be approximated
by a finite sum over discrete interpolation points, or ‘particles’, so
that for any volume integral

R
/ðr0Þdr0 ’

PN
b¼1

/ðrbÞ
qb

mb where the vol-
ume dr0 ¼ m=q and mb is interpreted as the mass associated with an
interpolation point b and we have summed over N interpolation
points. This means that any scalar variable f at particle position ra,
may be approximated by:

f ðraÞ ¼
XN

b¼1

mb

qb

� �
f ðrbÞWðra � rb;hÞ; ð4Þ

where N is the total number of particles.
In a two dimensional domain of dimension L� H, the constant

average particle volume V0 is given by V0 ¼ LH=N, i.e. the total do-
main area is distributed equally to each particle. The mass of par-
ticle b is then given by mb ¼ qbVb ¼ qbV0. In this paper we mainly
use the approach of Morris et al. [11], with some modifications, to
discretise the various conservation equations.

The Navier–Stokes equations in SPH form are those used in [17].
Throughout, we have scaled them with respect to length L, velocity
U0, time L=U0, density q0, viscosity l0 and pressure q0U2

0. Particle
density is evolved with the non-dimensional SPH equation for con-
tinuity [11]:

Dqa

Dt
¼ H

LN

XN

b¼1

qbuab � raWab ð5Þ

and the gradient is evaluated with respect to the coordinates of par-
ticle a. One way to model incompressible flow in SPH is to use an
artificial quasi-incompressible equation of state with a sound speed
low enough to be practical and also high enough to maintain an
approximately constant density at each time step. At low Reynolds
numbers more accurate pressure estimates are obtained, as well as
eliminating numerical instabilities in regions of low pressure, when
the non-dimensionalised equation of state

p ¼ 1
M2 q ð6Þ

is used [11]. The sound speed must be chosen to be large enough so
that the behaviour of the quasi-incompressible fluid is close to that

of the real fluid while not being so large that the time step becomes
prohibitively small [11]. In this paper the sound speed is chosen as
c ¼ 10U0 giving a Mach number M ¼ 0:1, where U0 is the character-
istic velocity. The non-dimensional momentum equation at particle
a may then be written as

Dua

Dt
¼ � H

L

� �
1
Re

1
N

XN

b¼1

qb
pa

q2
a
þ pb

q2
b

þ vab

� �
raWab þ Fa: ð7Þ

The pressure gradient term is designed to conserve total linear and
angular momentum. The viscous stresses for incompressible flows
used by Shao and Lo [17] is implemented

vab ¼ �
4ðla þ lbÞ
ðqa þ qbÞ

2

 !
uab � rab

jrabj2
: ð8Þ

For the case of constant density, which is the situation considered in
this paper, this expression is the same as that used by Morris et al.
[11]. Here, Fa represents the known non-dimensionalised external
force such as gravity or other body forces.

In this paper we use the cubic spline kernel which has compact
support, the second derivative is continuous with a dominant error
in the integral interpolant of Oðh2Þmaking the kernel insensitive to
particle disorder [7]. This is defined through the interpolation func-
tion g mentioned previously and given by:

gðsÞ ¼ 10
7p

1� 3s2=2þ 3s3=4; 0 6 s < 1;

ð2� sÞ3=4; 1 6 s < 2;
0; s P 2:

8><>: ð9Þ

This choice of kernel ensures that the support radius is R ¼ 2h.
All computations are performed within a non-dimensionalised

domain defined by 0 6 x 6 1 and 0 6 y 6 H=L. The initial particle
configuration is a rectangular lattice defined by

xa ¼ iDx for i ¼ f1; Ig;
ya ¼ ðj� 1ÞDy for j ¼ f1; J þ 1g;

where Dx ¼ 1=I;Dy ¼ H=ðLJÞ. Note that there are only I particles in
the x direction whereas there are J þ 1 in the y direction. Due to
the use of periodic boundary conditions at x ¼ 0;1 particles leaving
the right-hand side boundary at x ¼ 1 re-enter the left-hand side at
x ¼ 0 which can result in an excess number of particles there lead-
ing to an incorrect interpolation. This makes a total number of
N ¼ IðJ þ 1Þ fluid particles in the domain and on the boundaries.
Note that this initial regular configuration will change to a more
irregular one as the flow progresses in time.

We use a modified predictor–corrector scheme, with improved
stability properties, to solve the equations of motion and the par-
ticle update equation dra=dt ¼ ua as detailed in [13] with a predic-
tor step given by

unþ1=2 ¼ un þ Dt
2

Fn; rnþ1=2 ¼ rn þ Dt
2

unþ1=2;

qnþ1=2 ¼ qn þ Dt
2

Mn;

where Fnþ1=2 ¼ Fðrnþ1=2;unþ1=2Þ;Mnþ1=2 ¼ Mðqnþ1=2;unþ1=2Þ represent
the forces and mass flux in the flow (we use different fonts to differ-
entiate between the body force F and total forces F = pressure + vis-
cous + body forces, and mass m and mass flux M ¼ �qr � u). The
corrector step is then

u� ¼ un þ Dt
2

Fnþ1=2; r� ¼ rn þ Dt
2

u�; q� ¼ qn þ Dt
2

Mnþ1=2

followed by

unþ1 ¼ 2u� � un; rnþ1 ¼ 2r� � rn; qnþ1=2 ¼ 2q� � qn

3402 F. Bierbrauer et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 3400–3410
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The non-dimensionalised stability requirements [11] are: the CFL
condition, Dt 6 hM=4, viscous diffusion, Dt 6 Reh2

=8, and the con-
straint due to the magnitude of particle accelerations
Dt 6mina

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Reh=jFaj

p
.

2.1. Exact solutions

Two well known exact solutions to the incompressible Navier–
Stokes equations have been chosen as test cases: Poiseuille (P) and
Couette (C) flow. For Poiseuille flow we consider unsteady flow be-
tween two infinite parallel plates, located at y ¼ 0;H=L, at rest in
the presence of a pressure gradient. We follow Sigalotti et al.
[18] in defining a dynamic pressure p such that p ¼ pT � pH where
pT is the total pressure and pH is the hydrostatic pressure. The
hydrostatic pressure is here used as a body force
F ¼ ðFx; FyÞ ¼ �rpH=q ¼ ð8lU0=qH2;0Þ acting throughout the
domain. The exact non-dimensional solution for the horizontal
velocity component may then be expressed as

uPðx; y; tÞ ¼ �
2L
H

� �2

yðy� H=LÞ �
X1
n¼0

32

p3ð2nþ 1Þ3

� sin
ð2nþ 1Þpy

H=L

� �
exp �ð2nþ 1Þ2p2t

ReqðH=LÞ2

" #
: ð10Þ

The flow is then driven by an applied body force Fx ¼ 8lU0=qH2

here given through the hydrostatic pressure gradient. Initially, all
particle velocities within the domain are chosen to be zero,
u0

a ¼ 0, with constant density, q0
a ¼ 1, viscosity, l0

a ¼ 1, as well as
volume Va ¼ V0. Velocity boundary conditions are no-slip at the
top and bottom boundaries, uðx;0; H=L; tÞ ¼ 0, and periodic along
the left and right boundaries, uð0; y; tÞ ¼ uð1; y; tÞ. Boundary condi-
tions on the density and viscosity are homogeneous Neumann at
the top and bottom and periodic at the left and right boundaries.

The Couette flow case is similarly defined between two parallel
plates located at y ¼ 0 and y ¼ H=L. Again, the system is initially at
rest with the same fluid properties as for the Poiseuille flow case
above. The only difference in initial and boundary conditions from
the Poiseuille flow case is that the upper plate moves with a con-
stant velocity uðx;H=L; tÞ ¼ 1 and F ¼ 0 which applies for t P 0.
The exact solution is given by:

uCðx; y; tÞ ¼
Ly
H
þ
X1
n¼1

2
np
ð�1Þn sin

nLpy
H

� �
exp � n2p2t

ReqðH=LÞ2

 !
:

ð11Þ

We chose to use the specifications of the problem studied in Morris
et al. [11] with the characteristic parameters given by
q0 ¼ 1000 kg m�3; l0 ¼ 0:001 kg m�1s�1; U0 ¼ 1:25 � 10�5 m s�1;

L ¼ H ¼ 0:001 m; c ¼ 10U0 so that Re ¼ q0U0L=l0 ¼ 0:0125 and
M ¼ U0=c ¼ 0:1, a subsonic Mach number considered to be a good
approximation to the incompressibility constraint [18].

3. Consistent boundary conditions

The evaluation of boundary conditions in SPH, for the present
set of problems, involves no-slip boundaries on the top and bottom
boundaries, periodic boundaries at the left and right boundaries
and a combination of the two near boundary corners.

3.1. Periodic boundaries

The two test problems both make use of periodic boundary con-
ditions at x ¼ 0;1. Periodic boundaries are actually just the contin-
uation of the domain from one side into the other. Then, for any
scalar variable f ðx; y; tÞ at periodic boundaries we have

f ð0; y; tÞ ¼ f ð1; y; tÞ. It also means that any interpolation circle over-
lapping one of the periodic boundaries automatically overlaps the
other as well. Consider the right boundary at x ¼ 1. Any interpola-
tion for a particle within the support length of this boundary will
overlap the boundary and also appear to the right of the left
boundary at x ¼ 0. This means that if the interpolation circle was
originally centred on a particle ðxa; yaÞ, where 1� xa < R, its partner
circle to the left of the left boundary must be centred at ðxa � 1; yaÞ.
A typical update of the form (4) may be constructed by taking into
account information from the right and left boundaries, that is

f ðraÞ ¼
H
LN

X
rb2XR

f ðrbÞWðra � rb; hÞ þ
X

rb2XL

f ðrbÞWðra0 � rb; hÞ

0@ 1A;
where XR ¼ fðx; yÞ : ðx � xaÞ2 þ ðy � yaÞ

2
6 ðR=LÞ2; x < 1g;XR ¼

fðx; yÞ : ðx � xaÞ2 þ ðy � yaÞ
2
6 ðR=LÞ2; x 6 1g and XL ¼ fðx; yÞ : ðx�

xaÞ2 þ ðy� yaÞ
2
6 ðR=LÞ2; x > 0g. Any particle lying on the boundary

at x ¼ 1 is included through the sum over the region XR. The update
for fa now reads

fa ¼
H
LN

XN

b¼1

fbWab þ
XN

b¼1;xb – 0

fbWa0b

0@ 1A;
where ðxa0 ; ya0 Þ ¼ ðxa � 1; yaÞ. Note that any fluid variable involving
information at ðxa; yaÞ such as the pressure pa or velocity ua retains
its value in the corresponding interpolation circle at the opposite
boundary. This remains true of the density, viscosity and distance
ra0b so that va0b ¼ vab.

The update of the momentum equation, for both the Poiseuille
and Couette flow cases, near the right boundary x ¼ 1, where
ðxa0 ; ya0 Þ ¼ ðxa � 1; yaÞ, becomes

unþ1
a ¼ un

a �
H
LN

� �
Dt
Re

XN

b¼1

qbðpab þ vabÞraWab

"

þ
XN

b¼1;xb – 0

qbðpab þ vabÞra0Wa0b þ Fa

35;
where pab ¼ pa=q2

a þ pb=q2
b and Fx

C ¼ Fy
P;C ¼ 0 and Fx

P ¼ 8L2=H2. The
update of the continuity equations becomes

qnþ1
a ¼ qn

a þ
HDt
LN

� � XN

b¼1

qbuab � raWab þ
XN

b¼1;xb – 0

qbuab � ra0Wa0b

0@ 1A:
The update for particles lying near the left boundary is similar with
the only exception being that the corresponding interpolation circle
is now centred at ðxa þ 1; yaÞ.

3.2. No-slip boundaries

The essence of the current idea is to resolve the particle defi-
ciency problem near boundaries by approximating the velocity at
exterior image particles through a second order finite difference
approximation of the Navier–Stokes equations on the boundary it-
self, specifically the momentum equation. This allows the new
method to be an integral reflection while not being offset as shown
in Fig. 2c. The two-step process involves (i) exactly reflecting image
particle positions with regard to domain particle locations, thus
each image particle is a partner of a corresponding fluid particle
and (ii) using the Navier–Stokes equations to approximate image
particle velocities.

Consider a no-slip (wall) boundary along the boundary line
y ¼ H=L, as shown in Fig. 3 with velocity condition uW ¼
uðx;H=L; tÞ. We assign any scalar quantity such as density for the
image particle to be the same as that of its corresponding fluid

F. Bierbrauer et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 3400–3410 3403
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particle which is akin to that of the imposition of a Neumann con-
dition as used by [13,17], i.e. for scalar / ¼ fq;l; pg, so that
@/ðx;H=L; tÞ=@y ¼ 0. Therefore particles lying on the boundary pos-
sess the wall velocity condition. However, the density, viscosity
and pressure of these particles are not as easily evaluated since
only a Neumann condition is specified on this boundary. These
conditions are shown in Fig. 3. For particles lying inside the fluid
but ‘near enough’ to the boundary (this will be explained shortly)
at ðxb; ybÞ, and a normal distance dyb ¼ H=L� yb from the boundary
line, it is possible to construct a partner image particle beyond the
boundary the same normal distance from the boundary, that is at
ðxb0 ; yb0 Þ ¼ ðxb;H=Lþ dybÞ. A simple second order finite difference
approximation of the Neumann conditions gives qb0 ¼ qb;lb0 ¼ lb

and pb0 ¼ pb. It is also possible to obtain an expression for the im-
age particle velocity using the given wall condition but this is only
an average of low order accuracy. Instead, we will make use of the
Navier–Stokes equations at the boundary to evaluate the velocity
at the exterior image particle position. At any given time the veloc-
ity field already obeys the mass conservation equation but the
momentum equations are explicitly given at the boundary as:

ðut þ ðu � ruÞÞW ¼
1
Re
� 1

q
rpþ 1

q
r2uþ 1

q
F

� �
W

: ð12Þ

Now, the time derivative of the velocity condition utðx;H=L; tÞ may
be explicitly calculated as well as the derivatives ux;uxx. The only
terms not explicitly defined are px, and all y derivatives of the
velocity which, however, may be approximated using a second
order centred finite difference approximation (see Fig. 3):

ðuyyÞW ’
ub0 � 2uW þ ub

dy2
b

þ Oðdy2
bÞ:

The momentum equation (12) may then be used to express the im-
age particle velocities as

ub0 ¼ 2
2

2� ReqWvWdyb

� �
uW �

2þ ReqWvWdyb

2� ReqWvWdyb

� �
ub

�
þ 2ReqWdy2

b

2� ReqWvWdyb

� �
ðutÞW þ ðuxÞW þ

ðrpÞW
ReqW

�
� 1

ReqW
ðuxxÞW �

1
ReqW

FW

��
: ð13Þ

It is clear that this expression is completely general and takes into
account the presence of any body force terms whether this is repre-
sented by the pressure gradient force term in Poiseuille flow or
additional forces such as gravity. When the velocity boundary con-
dition is a constant, uW ¼ ð1;0Þ for the Poiseuille case and uW ¼ 0
for the Couette case we obtain

ub0 ¼ 2uW � ub þ dy2
bððrpÞW � FWÞ ð14Þ

plus terms of order Oðdy4
bÞ. Eq. (14) clearly shows that the usual

averaging extrapolation in common use is second order accurate
in dyb whereas the approach used above is automatically fourth or-
der accurate provided dyb remains ‘small’. When the particle lies on
the boundary dyb ¼ dyW ¼ 0 and ub0 ¼ uW satisfying the boundary
condition exactly.

Note that the condition (13) is calculated at time tn ¼ nDt where
the values un

W ;qn
W ;ln

W and pn
W are known. However, the pressure

gradient in the x direction is not known. It must be calculated
and may be obtained through the use of a centred difference
approximation, for example: ðpxÞW ¼ ðpa0 � paÞ=ðdxa0b þ dxabÞ,
where pa ¼ pðxa;H=L; tÞ; pa0 ¼ pðxa0 ;H=L; tÞ; dxa0b ¼ xa0 � xb and
dxab ¼ xa � xb. This involves the location of boundary particles,
ðxa;H=LÞ; ðxa0 ;H=LÞ closest to and on either side of the boundary
point ðxb;H=LÞ so that the distances dxa0b and dxab are, in general,
not equal. This means that such an approximation can be at most
first order accurate in dxa0b � dxab. This is not a serious problem
as the pressure derivative will always be small in an incompress-
ible flow. The calculations at the x ¼ 0;1 boundaries are obtained
from the application of periodic conditions already defined in Sec-
tion 3.1.

While a simple average, dI ¼ dF in (1), of the fluid and image
particle velocities satisfies the velocity boundary condition exactly
the current method only satisfies the boundary condition up to
second order in dyb. However, the purpose of the method is to
accurately approximate the solution beyond the boundary so that
it can be used within an interpolation circle which overlaps the
boundary to accurately update the Navier–Stokes equations. For
example, for Poiseuille flow at steady state, the method obeys
the analytical results exactly, i.e. ub0 ¼ uPðH=Lþ dybÞ whereas a
simple average is in error by 8L2dy2

b=H2. This means that a simple
average will overestimate the solution by this amount.

In addition, it should be noted that, whereas the initial particle
spacing Dy tends to remain small, the distance dyb ¼ H=L� yb may
be as large as the non-dimensionalised support radius R=L which is
always a multiple of the smoothing length. For simulations using a
small number of particles per dimension this radius can be a signif-
icant fraction of the domain length/width. This means we require
the second order correction term dy2

bððpxÞW � 8L2=H2Þ to be a local
one otherwise higher order terms will be needed. It is easily shown
that this remains true as long as dyb 6 H=ð2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� Re
p

Þ and
dyb 6 H=ð2L

ffiffiffiffiffiffi
Re
p
Þ, for the Poiseuille and Couette flow cases,

respectively.
Similarly, since the normal distance dyb may be as large as the

support radius the same criterion limits the support radius. Then,
since R=L ¼ 2h and the smoothing length is always some real mul-
tiple of the initial inter-particle spacing h ¼ qDy and using the fact
that H=L ¼ JDy, the support radius inequality allows the construc-
tion of the maximum allowable multiple q as qP 6 J=ð4L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� Re
p

Þ
and qC 6 J=ð4L

ffiffiffiffiffiffi
Re
p
Þ. For a set number of particles per dimension,

in the present case J ¼ f16;24;32;48;64g, we expect
qP 6 f1:9;2:8;3:8;5:7;7:6g and qC 6 f23:8;35:8;47:8;71:5;95:4g
for the Poiseuille and Couette flow cases respectively. This implies
that a choice of qP ¼ 3, in the Poiseuille flow case when J ¼ 16,
could produce larger errors than intended whereas this cannot oc-
cur in the Couette flow case as qC always exceeds even the lowest
expected values that can be obtained from J=4L

ffiffiffiffiffiffi
Re
p

using the pres-
ent grid sizes and support radii.

3.2.1. Incorporation into the Navier–Stokes equations
Before incorporating the new boundary condition approach into

the update of the Navier–Stokes equations, it is important to note
that only those particles lying within the support radius of a no-
slip boundary possess an interpolation circle which may overlap

Fig. 3. Fluid particle b, and image particle b0 , on either side of a wall boundary, with
velocity uW ¼ uðx;H=L; tÞ, with corresponding velocities, densities, viscosities,
pressures and Neumann conditions on scalar fields / ¼ fq;l; pg.
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the boundary. Any interpolation of a scalar function such as (4),
where the interpolation region overlaps the boundary, must be
separated into contributions from the region within the domain,
on the boundary, and the region outside the boundary. For the case
of a no-slip wall at y ¼ H=L we get

f ðraÞ ¼
H
LN

X
rb2XD

f ðrbÞWðra � rb; hÞ þ
X

rb0 2XI

f ðrb0 ÞWðra � rb0 ;hÞ

0@ 1A;
ð15Þ

where XD ¼ fðx; yÞ : ðx� xaÞ2 þ ðy� yaÞ
2
6 ðR=LÞ2; y < H=Lg is the re-

gion for those particles inside the domain, XD ¼ fðx; yÞ : ðx� xaÞ2þ
ðy� yaÞ

2
6 ðR=LÞ2; y 6 H=Lg includes the boundary as well and

XI ¼ fðx; yÞ : ðx� xaÞ2 þ ðy� yaÞ
2
6 ðR=LÞ2; y > H=Lg is the region

containing image particles outside the domain (see Fig. 4(a)). From
Fig. 4(a) it is clear that only those fluid particles, indicated by
ðxb; ybÞ, lying within the region XF ¼ fðx; yÞ : ðx� xaÞ2 þ ðy� yaÞ

2

6 ðR=LÞ2; y < H=Lg require a corresponding image particle, indicated
by ðxb0 ; yb0 Þ 2 XI. This means that the second sum in (15) may be
rewritten in terms of a sum over those fluid particles as ‘seen’ from
the centre of the image circle centred at ðxa0 ; ya0 Þ ¼ ðxa;2H=L� yaÞ,
but carrying with them the changes made to a particular variable
across the boundary, that is

f ðraÞ ¼
H
LN

X
rb2XD

f ðrbÞWðra � rb; hÞ þ
X

rb2XD

~f ðrbÞWðra0 � rb; hÞ

0@ 1A
¼ H

LN

XN

b¼1

fbWab þ
XN

b¼1;yb – H

~f bWa0b

0@ 1A;
ð16Þ

where ~f b indicates the change in fb across the boundary, for exam-
ple, when f ¼ u we have, for Poiseuille flow, ~ub ¼ �ubþ
dy2

bððpxÞW � 8L2=H2Þ, whereas if f ¼ p we have ~pb ¼ pb.1 Similarly,
any fluid variable evaluated at a retains its value i.e.
pa0 ¼ pa;ua0 ¼ ua. This must be the case as all calculations were orig-
inally oriented with regard to particle values inside the fluid. This is
shown in Fig. 4b. This simplifies the original calculation as this re-
quired non-existent image particles as part of the second sum. In

addition, it eliminates the need for another set of image particles
outside the domain, now the sums are carried out only over fluid
particles within, and on the boundary, of the domain. A similar up-
date is required for the y ¼ 0 boundary except that the correspond-
ing image circle is centred at ðxa0 ; ya0 Þ ¼ ðxa;�yaÞ.

The velocity update, for the Poiseuille and Couette flow cases,
within the momentum equations now reads

unþ1
a ¼ un

a þ
HDt
ReLN

XN

b¼1

qbðpab þ vabÞraWab

"

þ
XN

b¼1;yb – H

qbðpab þ va0bÞraWa0b þ Fa

35; ð17Þ

where the pressure gradient in the y direction and the position vec-
tors are defined by ðpyÞW ¼ 0; rab ¼ ra � rb and ra0b ¼ ra0 � rb. The
viscous term (8) includes the velocity difference

uab ¼ ua � 2uW þ ub; ua0b ¼ uab � dy2
bððrpÞW � FWÞ;

where uW ¼ ð1;0Þ for the Poiseuille and uW ¼ 0 for the Couette flow
cases. Note that the update for the velocity vector is performed up
to the boundary but the value for ua ¼ uW is not necessary as this is
already known. Similarly, the update of the continuity equation
becomes

qnþ1
a ¼ qn

a þ
HDt
LN

XN

b¼1

qbuab � raWab þ
XN

b¼1;yb – H

qbua0b � ra0Wa0b

8<:
9=;:
ð18Þ

3.3. Corner boundaries

At boundary corners an interpolation circle encounters both a
periodic and a no-slip condition. The choice of boundary condition
in each case depends on the vicinity of the fluid particle to the cor-
ner. For example, Fig. 5 shows the top right-hand corner. If the par-
ticle is located in region A, defined by ½R=L;1� R=L��
ððH � RÞ=L;H=L�, the update obeys the no-slip condition which
has been described in Section 3.2. If the particle lies within region
D, defined by ð1� R=L;1� � ½R=L; ðH � RÞ=L�, the update follows the
procedure described for purely periodic boundary conditions of
Section 3.1. If the particle is located within region C, defined
by the intersection of the lines x > 1� R=L; y > ðH � RÞ=L and
the exterior of the circle ðx� 1Þ2 þ ðy� H=LÞ2 P ðR=LÞ2, the

Fig. 4. (a) Boundary overlap of an interpolation circle centred at ðxa; yaÞ and definition of domain XD and image particle regions XI , (b) construction of image circle centred at
ðxa0 ; ya0 Þ ¼ ðxa;2H=L� yaÞ.

1 The Neumann conditions for the pressure and density indicate that pb0 ¼ pb and
qb0 ¼ qb or ~pb ¼ pb and ~qb ¼ qb . The volume and viscosity remain constant
throughout and are also the same Vb0 ¼ Vb ¼ V0;lb0 ¼ lb ¼ l0, or eV b ¼ Vb and
~lb ¼ lb .
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interpolation circle will only overlap on the top and right bound-
aries but not at the corner itself. If the particle is located within
region B, defined by the curves x 6 1; y 6 H=L and ðx� 1Þ2þ
ðy� H=LÞ2 < ðR=LÞ2, then the interpolation circle overlaps at all
boundaries including at the corner itself. A similar set of criteria
are required at the remaining corners.

In region C the inclusion of boundary conditions follows what
was done previously for the periodic and no-slip approaches ex-
cept that the original interpolation is now separated into three in-
stead of two sums. For a scalar function fa:

fa ¼
H
LN

XN

b¼1

fbWðxab; yabÞ þ
XN

b¼1;yb – H

f T
b Wðxab; yT

abÞ

0@
þ

XN

b¼1;xb – L

fbWðxR
ab; yabÞ

1A; ð19Þ

where xR
ab ¼ xa � 1� xb indicates the right (R) boundary,

yT
ab ¼ 2H=L� ya � yb indicates the top (T) boundary so that rT

ab ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxabÞ2 þ ðyT

abÞ
2

q
and rR

ab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxR

abÞ
2 þ ðyabÞ

2
q

. Here, f T indicates the

changes in f across the top no-slip boundary whereas there are no
changes for the periodic boundaries. The approach of dividing the
original sum in region C into three separate sums, as shown in
(19), may be used to update the momentum and continuity equa-
tions for the Poiseuille and Couette flow cases in an analogous
way as was done in Section 3.2.1. A similar set of updates are re-
quired for the top-left, bottom-left and bottom-right corners with
corresponding image circle centres.

In region B, the top-right (TR) corner, the interpolation now in-
cludes four separate sums given by

fa ¼
H
LN

XN

b¼1

fbWðxab; yabÞ þ
XN

b¼1;yb – H

f T
b Wðxab; yT

abÞ

0@
þ

XN

b¼1;xb – L

fbWðxR
ab; yabÞ þ

XN

b¼1;xb – L;yb – H

f T
b WðxR

ab; y
T
abÞ
!
; ð20Þ

so that an analogous inter-particle distance rTR
ab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxR

abÞ
2 þ ðyT

abÞ
2

q
.

Note that the corresponding change in f is given by f T rather than
f TR as there is no change across the periodic boundary. The same
procedure (20) may again be used to update the momentum and
continuity equations for the two flow cases. A similar set of updates
are needed for the top-left, bottom-left and bottom-right corners in
addition to their corresponding image circle centres.

4. Numerical results and discussion

SPH possesses two distinct length scales: the average inter-par-
ticle spacing Dx which corresponds approximately to 1=n, the in-
verse of the number of particles per dimension, and the
smoothing length h [5], rather than one as for example with finite
difference methods which only require Dx. Quinlan et al. [14] have
shown that the discrete convergence characteristics of SPH depend
on both the smoothing error, which is a function of smoothing
length h, and the discretisation error, which depends on the ratio
of smoothing length to inter-particle spacing, h=Dx. This means
that as h=Dx is increased, accuracy becomes limited by smoothing
error. However as the smoothing length decreases, the error be-
comes dominated by discretisation error. Second order accuracy
in h is possible when smoothing error dominates so that h=Dx is
large [14]. These two independent parameters are equivalent to
saying that higher order accuracy is obtained when both the num-
ber of particles n in the simulation and the number of particle
neighbours per dimension nn ’ 2h=Dx are increased with n
increasing faster than nn otherwise the method is inconsistent [16].

In both the Poiseuille and Couette flow problems the algorithm
was run up to the steady state which is considered to be fully
developed at approximately t = 1 s [5] which corresponds to a
non-dimensional time T = 0.0125. In the two test cases the initial
particle configuration was a regular lattice as described in Section
2. However, since Dx ¼ Dy we make use only of Dx to indicate the
initial inter-particle spacing. As such, the solution may be analysed
by considering this initial lattice as a ‘grid’. In this paper we chose
to use the following grids: 162;242;322;482;642. Given the small
Reynolds number used particle motion is limited for this timescale
so that an assumption using Dx as the average inter-particle spac-
ing remains approximately valid. In the following numerical con-
vergence is studied by plotting how the error varies with the
smoothing length h and the number of particles n ¼ 1=Dx so that
we may make a comparison with the results of Graham and
Hughes [5] and Quinlan et al. [14].

4.1. Post-processing

4.1.1. 2D slice
Typically, the accuracy of the solution is studied by taking a

plane slice through the three dimensional data ðx; y;uÞ at x ¼ 1=2
for the horizontal velocity uð1=2; y; tÞ. Although the actual data
points will not necessarily lie on the chosen plane the velocity
information there can be obtained by perpendicularly projecting
the velocity data from those points ðxp; ypÞ lying closest to the
plane x ¼ 1=2 (see Fig. 6). Given that these points will generally
lie within the inter-particle distance Dx there is little inaccuracy
in this approach.

4.1.2. Errors
Although taking a slice of the 2D horizontal velocity informa-

tion allows a qualitative comparison with the analytical results,
it introduces some extra error. This is avoided if a direct error anal-
ysis is made by using the velocity data already obtained from
numerical calculations, i.e. the set of data unðrb; tnÞ, which allows
a direct comparison with analytical results ueðrb; tnÞ, where e and
n refers to the exact and numerical data respectively. The L2 error
E ¼ kue � unk2 is then obtained as follows:

kue � unk2 ¼
1
N

XN

b¼1

jueðrb; tÞ � unðrb; tÞj2
 !1=2

; ð21Þ

where we have summed over all N particles b and averaged the re-
sult. The order of the error may be analysed by assuming its size to
be a power of smoothing length, h, so that EðhÞ / hp. A comparison

D

A B
C

no-slip

periodic

Fig. 5. Evaluation of boundary conditions at a no-slip-periodic corner indicated by
four separate regions A;B;C and D.
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of errors between two smoothing lengths h1 and h2 may be made so
that the order of accuracy of the method is given by

p ’ logðEðh1Þ=Eðh2ÞÞ
logðh1=h2Þ

: ð22Þ

This calculation remains valid provided the particles lie approxi-
mately on a regular lattice, otherwise the error may no longer be
proportional to h. Calculations have shown that the development
of the flow up to an approximate steady state at T ¼ 0:0125 main-
tains this approximate regular lattice configuration.

4.2. Poiseuille flow

The use of the current method for the numerical solution of the
Poiseuille flow problem can be observed in Fig. 7a which shows
both the numerical and analytical solution at x ¼ 1=2, i.e.
uð1=2; y; tÞ for a 642 grid with h ¼ 2:2Dx. A quantitative comparison
of the convergence rate can be made from Figs. 7b and 8 firstly
showing log–log graphs of the L2 error as a function of the number
of particles 1=Dx and secondly as a function of smoothing length h
(Fig. 8a) and the ratio of inter-particle spacing to smoothing length
Dx=h for various grid sizes (Fig. 8b).

Compare the graphs in Fig. 7b, which show the error behaviour
as a function of the number of particles. Convergence is only guar-
anteed provided both the number of neighbours and the number of
particles increase, with n always increasing faster than nn. This

u

x

y

1

H/L

1/2

(xp,yp)

(1/2,yp)

Fig. 6. Projection of particle velocity data up at closest data point ðxp; ypÞ onto the
plane x ¼ 1=2.
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Fig. 7. (a) Comparison of SPH and series solutions of Poiseuille flow at x ¼ 1=2 for a 642 grid with a smoothing length of h ¼ 2:2Dx, (b) log–log graphs of the L2 error for
Poiseuille flow as a function of the number of particles.
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Fig. 8. Log–log graphs of the L2 error for Poiseuille flow as a function of (a) smoothing length and (b) Dx=h.
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time, as has been shown in [5], we expect the error to converge
when E / Oð1=DxÞ resulting in slopes of order 1. Clearly, as the
number of particles and neighbours increase (while still maintain-
ing n > nn), as measured by the ratio h=Dx, from h=Dx ¼ 1:525 to
h=Dx ¼ 4:0, the slope approaches 1. This behaviour has also been
observed by Graham and Hughes [5]. The graphs also demonstrate
the behaviour noticed in Graham and Hughes [5] whereby second
derivative errors in the viscous term are overpredicted, which
effectively increases viscosity and gives rise to slopes smaller than
1 for larger numbers of particles. This behaviour is observed on the
right-hand sides of the graphs. This also explains why the errors
are larger for values of h=Dx beyond 2.2.

Fig. 8a shows that second order convergence (as shown by the
line marked 2:1) is approached for the finer grids
Dx ¼ 1=48;1=64, or equivalently for larger numbers of particles
as h decreases. The graphs also display the typical behaviour
pointed out by [14] when discretisation error dominates the
smoothing error giving rise to negative slopes on the left hand side
of the graphs, i.e. for h=Dx ¼ 1:525;2:2. The graphs show that a
minimum in the error is reached, at about h=Dx ’ 2:7, after which
the error becomes progressively dominated by the smoothing error

and the slopes become positive. As both Dx and h are decreased, so
that h=Dx gets larger, increasingly improved convergence rates are
obtained which approach second order. From Fig. 8a we see that
even though the error progressively decreases as the initial inter-
particle spacing Dx is reduced from Dx ¼ 1=16 to Dx ¼ 1=32, the
further reduction from Dx ¼ 1=48 to Dx ¼ 1=64, actually increases
the error demonstrating the interaction between the smoothing er-
ror Oðh2Þ and discretisation error O½ðDx=hÞbþ2� terms as shown in
Quinlan et al. [14].

Fig. 8b shows how the L2 error varies with the ratio Dx=h. Given
that b ¼ 2 for the kernel used in this paper we expect to see error
behaviour of the form ðDx=hÞ4 which can be observed on the right-
hand side of Fig. 8b when the ratio Dx=h is large and h small.

Fig. 9 shows how the error grows with time to its final value at
T ¼ 0:0125. The figure shows both the h ¼ 1:525Dx and the
h ¼ 3Dx results to judge how the smoothing length/grid size ratio
affects error growth. Clearly, as the ratio h=Dx increases with finer
grid resolution Dx, the final steady state error obtained at t ¼ T is
both smaller and is reached more quickly than for the larger ratios.
The h ¼ 1:525Dx case involves an initial drop and then a growth in
error for almost half the time until the steady state is reached
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Fig. 9. Time variation of the L2 error for Poiseuille flow for various grids.
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Fig. 10. (a) Comparison of SPH and series solutions of Couette flow at x ¼ 1=2 for a 642 grid with a smoothing length of h ¼ 3Dx, (b) log–log graphs of the L2 error for Couette
flow as a function of the number of particles.
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whereas the h ¼ 3Dx case has a prolonged error drop followed by
error growth although still reaching the final steady state at about
the same time.

The limiting behaviour of Fig. 9 suggests that the expression of
Shao and Lo [17] is subject to errors of order one and so there is no
real advantage in using it instead of the expression in [11] for the
problems considered here.

4.3. Couette flow

From Fig. 10a, using a 642 grid and h ¼ 3Dx, it is clear that, like
the Poiseuille case, the SPH solution closely approximates the ana-
lytical solution. Fig. 10b demonstrates slopes of order 1 for the er-
ror as a function of the number of particles for the entire range of
h=Dx ratios and number of particles. Note, however, that for a gi-
ven number of particles, as the ratio of the number of neighbours
to the number of particles nn=n ’ 4h increases, the error also in-
creases. This characteristic was true for the Poiseuille case only
for ratios h=Dx > 2:2. Note also that the graph for h ¼ 0:8Dx does
not show a slope of order one, rather, a much smaller slope so
that the error appears to be almost independent of the number
of particles for this ratio of smoothing length to inter-particle
spacing. This decrease in slope was also true to a lesser degree

in the Poiseuille flow case, cf the h ¼ 1:525Dx graph in Fig. 7b
with the other cases.

Fig. 11a shows the convergence behaviour as a function of
smoothing length. Almost second order convergence is observed
for all grid spacings and larger smoothing lengths. The case when
h ¼ 0:8Dx, corresponding to the most negative value of log10ðhÞ
for each graph, shows how the ratio of inter-particle spacing to
smoothing length dominates the smoothing length in this region
(cf h and Dx=h in each case).

Fig. 11b demonstrates the influence of discretisation error for
larger values of Dx=h on the right-hand side of each graph. Here,
the slopes approach order 4 as expected from the analysis of Quin-
lan et al. [14]. It should be pointed out that the Oðh2Þ and O½ðDx=hÞ4�
error behaviour for both the Poiseuille and Couette flow problems
follows similar trends with a characteristic V shape to the graphs of
E versus h and Dx=h. However, the minimum in the V shaped graph
is reached at different values of h=Dx for the two flow problems
with h=Dx ’ 2:7 for the Poiseuille case and h=Dx ’ 1:5 for the Cou-
ette case. Similarly, the O½ðDx=hÞ4� behaviour of the discretisation
error is demonstrated for the finer grids in the Poiseuille flow case
but shows up better for the coarser grids for the Couette flow case.
Fig. 12 shows the time variation of the error for the
h=Dx ¼ 1:525;3:0 ratios. It again shows how a larger ratio of nn=n
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Fig. 11. Log–log graphs of the L2 error for Couette flow as a function of (a) smoothing length and (b) Dx=h.
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increases the error. It also shows that larger ratios of h=Dx reach
the asymptotic solution faster than smaller ones.

5. Conclusion

A new approach to the implementation of boundary conditions
in the method of smoothed particle hydrodynamics has been pre-
sented. This approach has allowed the accurate simulation of
incompressible flows for low Reynolds numbers.

The proposed method provides a solution to the so-called parti-
cle deficiency problem. This problem arises in the vicinity of rigid
walls and is due to insufficient information being available to per-
form accurate interpolation of data at particles located nearer to
the boundary than the support of the interpolation kernel. The pro-
posed method differs from other approaches that have used image
particles to overcome the particle deficiency problem. Many of
these alternative techniques require a large number of image par-
ticles to obtain accurate approximations. The velocity of image par-
ticles is obtained using linear extrapolation. The consistent
reflected image particle method possesses two main advantages

� no extra image particles must be stored as part of the code. All
image particles are constructed from and are co-moving with
matching domain particles about a no-slip boundary so that
image particle velocities are integral and not offset.

� image particle velocities are consistent with both the no-slip
boundary conditions and the momentum equations improving
the order of accuracy compared to previous interpolation
approaches.

The consistent reflected image particle approach is validated on
two benchmark problems, viz. Poiseuille flow and Couette flow.
The number of particles and the smoothing length are varied and
the accuracy of the approximation as a function of these parame-
ters is investigated.

This paper represents a first stage in the application of the con-
sistent reflected image particle approach used here to solve prob-
lems with SPH which include no-slip boundaries. Future work
will apply the method to more general problems such as flow
around immersed bodies. Note that the use of the method to model
no-slip boundaries immersed within the flow having irregular
geometries remains valid for particles located within the immersed
body. The same reflected image approach may be used to evaluate
image particle velocities and the momentum equation may be
implemented using a localised x� y coordinate frame with tangen-
tial and normal directions at each boundary point.
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